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Figure 1: In this example scene (left image), two users (A and B) face one another, perhaps playing a mobile AR game where
full-body tracking could be valuable for expressive input. Unfortunately, neither phone is able to see – and thus digitize – its
owner’s body. However, User B’s phone (right image) can see User A (and vice versa) through its rear facing camera. BodySLAM
uses this view to capture and digitize the body, hands and mouth of User A and shares the data (visualized as A’). User A does
the same for User B, providing ad hoc full-body tracking (B’) without having to instrument either the user or environment.

ABSTRACT
Today’s augmented and virtual reality (AR/VR) systems do not pro-
vide body, hand or mouth tracking without special worn sensors or
external infrastructure. Simultaneously, AR/VR systems are increas-
ingly being used in co-located, multi-user experiences, opening the
possibility for opportunistic capture of other users. This is the core
idea behind BodySLAM, which uses disparate camera views from
users to digitize the body, hands and mouth of other people, and
then relay that information back to the respective users. If a user is
seen by two or more people, 3D pose can be estimated via stereo
reconstruction. Our system also maps the arrangement of users
in real world coordinates. Our approach requires no additional
hardware or sensors beyond what is already found in commercial
AR/VR devices, such as Microsoft HoloLens or Oculus Quest.

CCS CONCEPTS
• Human-centered computing → Human computer interac-
tion (HCI); Interaction techniques; Gestural input.
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1 INTRODUCTION
Handheld controllers, offering several buttons and six degree-of-
freedom tracking, are the most common input approach seen in
today’s augmented and virtual reality (AR/VR) systems (e.g., HTC
Vive [42], Oculus Rift [33]). Of course, there are many other facets
that could be valuable to digitize, including user body pose, facial
expression, skin tone and apparel. Unfortunately, very few AR/VR
systems capture these dimensions, and when they do, it is most
often via special worn sensors (e.g., instrumented gloves [19], addi-
tional cameras mounted on the headset [23]). Alternatively, external
infrastructure can be deployed (e.g., multiple room-mounted cam-
eras) that capture body pose without having to instrument the user
[33, 42].

In this work, we take advantage of an emerging use case: co-
located, multi-user AR/VR experiences. Although nascent, the ap-
plication space is already diverse (see Video Figure), ranging from
co-located 3D modeling [7, 38] and AR-augmented collaborative
spaces [29, 36], to tele-medicine and multi-player games [3, 8].
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Figure 2: Example camera views (A-E) from co-located users wearing AR headsets, which BodySLAM uses to digitize the body
pose, hand gesture, mouth state and apparel of participants. This data is then relayed back to users (shaded insets), offering
advanced functionality without the need for worn instrumentation. BodySLAMalso generates a scene topology (bottom right).

Our systemmakes it possible to have shared and ad-hoc extended
reality experiences in dynamic environments without the need
for any additional hardware or setup (Figure 1. In such contexts,
participants are often able to see each other’s bodies, hands, mouths,
apparel, and other visual facets, even though they generally cannot
see their own bodies. Using the existing outwards-facing cameras
on smartphones and AR/VR headsets (e.g., Microsoft HoloLens,
Oculus Quest), these visual dimensions can be opportunistically
captured and digitized, and then relayed back to their respective
users in real time (enabling e.g., full-body motion capture and hand
gesture recognition) without any special instrumentation. This is
the key insight that motivated our work on BodySLAM.

Our system name was inspired by SLAM (simultaneous localiza-
tion and mapping) techniques for mapping unknown environments
[10, 13]. In these systems, many viewpoints are used to reconstruct
the geometry of the environment. In a similar vein, BodySLAM
uses disparate camera views from many participants (Figure 2, User
views A-E) to map the geometric arrangement of other users in the
environment (Figure 2, bottom right), as well localize the capturing
user’s position in the scene. Our system also captures fine-grained
details, such as hand and mouth pose, as well as visual attributes
such as apparel. When a person is seen by two or more users (Figure
2, views of User D from Users B and C), we also estimate 3D pose
data (Figure 4).

After reviewing related work, we then describe our proof-of-
concept implementation. We evaluate our system in a multipart
user study, incorporating two tasks and two group sizes. To ex-
plore how BodySLAM might scale to larger numbers of people, we
ran software simulations in virtual rooms. Although we did not
build any example applications, we note that digitization of bodies
has been well motivated in prior work, including uses in social
VR and telepresence [29], entertainment and gaming [3], and 3D
manipulation [38].

2 RELATEDWORK
There has been significant prior work in motion capture and re-
construction of scenes. Thus, we first review the literature in body
digitization – sensed using both external and on-body techniques.
We then move to multiview geometry and similar reconstruction
techniques, concluding with efforts in the domain of creating shared
AR/VR experiences.

2.1 Body Digitization
The desire to digitize bodies is not new and there are popular com-
mercial systems (such as Vicon [41] and OptiTrack [30]) that pro-
vide very accurate tracking of the body, hands and face using optical
markers. In VR settings, the use of external trackers is prevalent,
including systems such as HTC Vive’s Lighthouse tracking system
and the external sensors used by the Oculus Rift[33, 42]. Camera-
based approaches have made tremendous recent progress, driven
by advances in deep learning, e.g., OpenPose [11], PoseNets [31]
and V-NECT [25]. More specifically in the area of virtual reality,
FaceVR [39] uses an external RGB and depth camera to capture face
and mouth pose. Non-optical methods have also been considered
for external pose tracking, including radio frequency (RF) [47] and
capacitive [46] sensing.

Alternatively, instead of relying on room-borne infrastructure,
the user can be instrumented, which has advantages in terms of
mobility. For whole body capture, suits using IMU’s [14], body-
mounted cameras capturing optical flow [37], head-mounted fish-
eye cameras viewing the body [32, 40, 44] and mechanical linkages
to the limbs [26] have all been considered. There is also a plethora
of research on first-person hand pose and gesture recognition, in-
cluding vision [22], acoustic [4] and electrical methods [45, 49]. For
mouth pose estimation, Li et al. [23] used a camera mounted to the
underside of the headset to capture mouth pose. EyeSpyVR [2] uses
the front-facing camera of the smartphone (placed into a low-cost
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VR headset) to capture eye movements and blinks. MeCap [1] used
the outward-facing camera of a VR headset — in concert with a
hemispherical mirror attachment — to capture the body, hand, and
mouth pose of the wearer.

2.2 Scene Reconstruction
There has been a plethora of research in the robotics and computer
vision community on scene and multiview reconstruction. These
include the aforementioned simultaneous localization and mapping
(SLAM) based techniques that help place objects in an unknown
environment [13]. Visual SLAM approaches can rely on multiview
stereo [10], visual odometry [28] and structure from motion [20].
Similarly, BodySLAM uses multiple views to reconstruct user topol-
ogy, and multi-view stereo to estimate 3D pose information.

2.3 Collocated AR/VR
The HCI community has lightly explored collocated AR/VR ex-
periences through different enabling technologies. For instance,
Side-by-Side [43] used handheld projectors (emitting both visible
and infrared light) to create multi-user experiences, such as gaming.
SynchronizAR [17] demonstrated collaborative gaming through
a smartphone AR app with indoor localization. HoloRoyale [34]
provides a comprehensive design space exploration of large-scale
high-fidelity collaborative AR experiences. Commercially, Apple’s
ARKit allows for shared AR experiences, where many users can join
using their own smartphones. Finally, Imaginary Reality Games [5]
creates virtual playgrounds for participants to play sports.

3 SYSTEM ARCHITECTURE
We now describe the three high-level components that form the
basis of our system.

3.1 Exemplary AR/VR Prototypes
We created three exemplary prototypes that cover different AR/VR
modalities. These include an iPhone XR smartphone for mobile (i.e.,
"passthrough") AR (Figure 3, left), a HoloKit headset [16] for AR
(center), and a Google Cardboard [12] for VR (right). We fitted each
of these devices with printed 7x7 cm ArUco tag [27] for spatial
tracking. For our two headsets, unique tags are placed on all four
sides for user identification from any viewpoint. For our mobile AR
prototype, a single tag is placed on the back of the phone.

3.2 Client Software
BodySLAM employs a client-server paradigm.We created two client
implementations, with different approaches for computation. First
is a smartphone app that streams camera data using RTSP overWiFi
to our backend server for computer vision processing. Although
this architecture can leverage greater CPU and GPU resources, it
incurs a latency penalty. On average, it takes 110 ms for video to
reach the server, followed by 154 ms of processing, and a further
10 ms for processed data to be returned to the client. In total, our
system latency is roughly 300 ms at a frame rate of 9 Hz.

Our second client implementation runs all computer vision on
the smartphone. For this, we use PoseNets [31], a lightweight pose
estimator that reports body keypoints. Although missing hand and

Figure 3: BodySLAM works across different AR/VR modal-
ities, including mobile "passthrough" AR (left), head-worn
AR (center; HoloKit), and VR (right; Google Cardboard).

face tracking capabilities, it nonetheless offers a useful proof-of-
concept for a more self-sufficient system. ArUco detection and
tracking also runs locally, using JSArUco [18]. Processed data is
then sent to the server for final processing (e.g., 3D pose via stereo
correspondence) and distribution to other clients. End-to-end la-
tency is around 150ms, and the full stack runs at 12Hz on an iPhone
XR (see demo in Video Figure). Given the tremendous strides phone
manufacturers are making with hardware accelerated deep learning,
a fully featured and full framerate pose tracking pipeline should be
possible in the near future.

For our VR client software and our two AR clients, we sync the
overlaid pose of in-view people with the gyroscope of the smart-
phone, so that the latency of the real-time view (limited by camera
FPS in our VR and Mobile AR implementations) is decoupled from
the FPS of pose tracking. For demonstration, our interface is chiefly
a passthrough view, on top of which we superimpose the wearer’s
body, hand, face, skin and apparel if provided by others.

3.3 Backend
Our backend (i.e., cloud) server is a 12-core Intel Core i7 with three
Nvidia 1080 Ti GPUs. The server software is a multi-threaded lis-
tener, which listens for connections and data from clients. The
server maintains global state and multicasts it back to registered
clients. For our AR and VR headset prototypes, the client smart-
phones stream camera frames over WiFi to our backend for com-
puter vision processing. For our mobile VR prototype, all computer
vision processing happens on the smartphone and only pose data
is transmitted to the server.

4 PROCESSING PIPELINE
We now describe the core processes that form our main computer
vision and machine learning pipeline.

4.1 Identifying and Localizing Users
The first stage of our computer vision pipeline is to find and track
participants in each camera view. As noted in Apparatus, users are
assigned unique ArUco tags. For our headsets, four tags are used,
which identify the user and the side of the head. The front-facing
ArUco tag is considered the user’s origin, and the left, right, and
rear tags have known rotational and spatial offsets to this origin. If
multiple tags from one user are visible, we use the tag most-frontal
to the viewer, as this provides the most stable tracking result. In
our self-contained mobile AR client we use JSArUco for tracking;
for our backend computer vision pipeline we use OpenCVs ArUco
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Figure 4: Users C and D see a common user E. These two
views can be used to estimate E’s 3D pose via stereo corre-
spondence.

marker implementation [9]. In both cases, we use a time-to-live
of one second to provide stability against momentary losses in
tracking (e.g., occlusion, motion blur). The result of this process is
the relative 3D position and orientation of every user that is seen
by others, with wearers as the origin.

4.2 Scene Topology
As users cannot see themselves, it means everyone is given their
position and pose data by someone else. This pairwise information
is used to create a directional graph, with distance and angle infor-
mation. Note that users that see no one can still be added to the
graph if at least one person sees them. Also, a user that is not seen
by anyone can still be added to the graph if they see at least one
person, as show-cased in Figure 2.

To create a "global" scene topology, our software finds the most
complete graph with a depth-first search. Although links are direc-
tional in reality (i.e., one person sees another), the origins can be
inverted to make them functionally bi-directional. We move from
one person to another, building a unified 3D coordinate system
by multiplying individual user’s transformation matrices as they
are added. This way the whole operation is limited to the order of
O(V+E) where V is the number of people and E is the number of
people seen by each person.

4.3 Body, Hand and Mouth Pose
Once participants are localized in a common coordinate system,
our next step is to extract fine-grained body details. For this, we
use PoseNets [31] on our mobile AR client and OpenPose [11]

Figure 5: Hand gestures from left to right: okay, thumbs up,
high five, peace sign and fist.

running on our backend server for our worn VR and AR clients.
Both packages provide body keypoints, however only OpenPose
provides hand and face keypoints.

4.4 2D Pose via Multi-Viewpoint Selection
If a user is seen by exactly one person, we must make best use
of this limited keypoint data. Unfortunately, this view is rarely
frontal, and so we attempt to transform it to a frontal view using
the algorithm in Kostrikov et al. [21], which estimates 3D keypoints
given 2D keypoints. With this estimated 3D output, we can rotate
to a synthetic frontal view.

In multiuser settings, where a user might be seen by several
people, our software selects the most frontal of the views for this
transformation. Although other views might contain more tracked
keypoints, we found in practice that the more frontal the view, the
truer the pose following rotation.

4.5 3D Pose via Stereo Correspondence
In cases where users are seen by two or more people, we can esti-
mate 3D body pose. For this, we take the pair that minimizes the
reprojection error of the 3D pose back onto the image. For each
selected pair, we move all our cameras to a homogeneous coor-
dinate frame using the 6 DOF data from users’ ArUco tags. We
then run a 3D point triangulation [15] to estimate the 3D position
for each body keypoint. An example output from this process is
shown in Figure 4. As before, we rotate this view to be frontal when
presenting the data to the wearer in the client app.

4.6 Skin and Apparel Color Estimation
For skin color, we extract patches from the neck, hands and lower
face (which are the least likely to be occluded by clothing) and com-
pute the median color. For shirts, we take an image patch between
the hips and torso keypoints, and similarly compute the median the
color. For pants, we extract a patch from above the left and right
knees of a user.

4.7 Hand Gesture Recognition
As a proof-of-concept of a downstream use of pose data, our sys-
tem performs real-time hand gesture recognition. We support five
gestures: okay, thumbs up, high five, fist and peace sign (Figure
5). For machine learning features, we calculate unit direction vec-
tors from all hand keypoints to the wrist. These converts our data
from a higher-dimensional pixel-space to a scale invariant feature
space. These are fed to a standard multiclass classifier (MLP; sklearn,
default parameters).

Figure 6: Mouth states from left to right: mouth open, smile
and neutral.
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4.8 Mouth State Recognition
We also perform mouth state recognition, supporting neutral, smile
and mouth open gestures (Figure 6). Similar to our hand gesture
process, we compute unit direction vectors for all mouth keypoints
using the left mouth corner as the origin. As before, we pass this
feature vector to a MLP classifier (sklearn, default parameters) for
prediction.

5 USER STUDY
To better evaluate the performance of BodySLAM in different use
contexts, our study procedure varied the activity (static vs. dy-
namic), distance between participants (2 or 4 meters) and group
size (one-on-one vs. small group). As a proof-of-concept appara-
tus we used our Holokit AR prototype, so that participants could
see each other and BodySLAM data. Our backend software saved
processed camera frames for later evaluation. All classifiers were
pre-trained on five independent users and ran live during data
collection.

5.1 Static Activity
We chose a meeting context as an exemplary static activity. In our
one-on-one condition, this was equivalent to a standing, face-to-
face discussion. For this, we recruited three pairs of participants,
and had them repeat our study procedure at 2 and 4 meters apart. At
each distance, we asked both participants to perform the following
actions sequentially, in a random order:

• 10 body gestures: hands by side, right hand raised, left hand
raised, arms crossed, hands behind head, arms stretched
horizontally, hands on hips, sitting down with arms at rest,
sitting down with arms crossed, and sitting down with chin
resting on hands.

• 5 hand gestures (Figure 5): okay, thumbs up, high five, fist
and peace sign.

• 3 mouth states (Figure 6): neutral, smile and mouth open.
Participants saw their live pose and gesture classification results

in the AR overlay, which they judged and verbal stated to be correct
or incorrect, which was recorded by the experimenter. Participants
pairs repeated the two distance conditions three times each, for
a total of six collection sessions. For our small group condition,
we mimicked a conference room setting. We recruited two groups
of 5 participants, who were seated around a table. Participants
completed the same 10 body gestures, 5 hand gestures and 3 face
gestures using the same procedure above.

During the study, BodySLAM also captured shirt, pant and skin
color. After completing all sessions, we had users select their own
skin color on a printed Fitzpatrick scale [35], which we later com-
pared to BodySLAM’s estimate. To assess the quality of shirt and
pant color estimation, the extracted colors were shown to partici-
pants, who judged it as either accurate or inaccurate.

5.2 Dynamic Activity
As an exemplary dynamic activity, we used a ball game (Figure 2),
where participants were told to achieve the highest number of con-
secutive passes without dropping the ball. After fitting participants
with our Holokit AR prototype, we let them play for five minutes,

during which BodySLAM ran continuously on all headsets. Dis-
tance between participants varied as they moved around the space,
as did their head direction and pose, especially when having to
pick up dropped balls. For our one-on-one condition, we recruited
three new pairs of participants to play our game. For groups, we
recruited two sets of five players.

6 RESULTS
BodySLAM tracks many user dimensions, and as such, we break
the discussion of our results into four parts: user registration in
the scene topology, keypoint tracking, gesture recognition, and
skin/apparel extraction. As noted previously, all classifiers were
trained before the study, and thus all accuracy numbers reported
here are cross-user results.

6.1 User Identification and Tracking
Across all conditions, the average percentage of participants cap-
tured and registered in the scene topology was 95.2%. In our one-on-
one conditions, both static and dynamic activities, registration was
100%. Even when one user had to bend down to pick up a dropped
ball, the other user was able to capture them and add them to the
global scene topology. Surprisingly, this performed better than our
static small group condition (89%). In the latter setting, users were
sitting fairly close, and often only captured one or two other partic-
ipants in the camera’s field of view. Depending on the group foci,
this sometimes led to disjoint graphs (e.g., two participants looking
at each other, but not seen by anyone else). The group ball game
had the worst registration performance (87%), which we found was
chiefly due to high motion blur causing ArUco tracking to fail.

6.2 Body, Hand and Mouth Keypoints
We considered capturing 3D ground truth keypoints for users’ bod-
ies, hands and mouths using a professional optical tracking system.
This required dozens of markers to be worn by our participants,
which was cumbersome to setup and prone to breakage in our ball
game condition. We also found that the markers interfered with
our computer vision pipeline, especially on the hands and mouth.
We instead decided to avoid instrumenting our participants and use
human annotators to post hoc code the live tracking output from
our system.

For our one-on-one conditions, we extracted one frame every sec-
ond (image with keypoints overlaid), yielding 1184 frames. For our
small group conditions, we randomly sampled 1000 frames. These
frames were split equally between two annotators, who coded each
frame as correctly or incorrectly registered to all users visible in the
view. A correct registration required 1) more than 80% of visible key-
points in the frame to be detected and 2) that all keypoint centers
intersected with their respective body joint. Overall registration
accuracy was 95%, 93% and 83% accuracy for body, hand and mouth
keypoint registration. Figure 7 breaks this out per condition.

6.3 Self-Assessed Body Pose Quality
As described previously, participants were shown their body pose
(provided by other participants via BodySLAM) in their AR headsets.
In our static activity conditions, participants were asked to perform
one of 10 possible body poses. The experimenter then verbally
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Figure 7: Percentage of body, hand andmouth keypoints cor-
rectly registered (all study conditions combined).

asked, “does the pose you see on your screen match the pose you
are holding.” In 94% of instances, participants agreed. Failure cases
were usually due to gross keypoint registration errors.

6.4 Hand and Mouth Gesture Recognition
BodySLAM uses hand and mouth keypoints for multiclass gesture
classification (Figures 5 and 6). In our static activity conditions,
we found a mean hand classification accuracy of 88% and a mean
mouth state recognition of 91%. Unlike body pose, which benefits
from greater distance between participants (such that the whole
body is visible), hand and mouth classification benefit from being
closer in order to provide sufficient camera resolution to resolve
fine details (Figure 8).

6.5 Skin Color and Apparel Detection
As described above, participants selected their own skin color from
a printed Fitzpatrick scale [35] during the study. We compared this
number to BodySLAM’s skin color estimate and found a mean error
of 0.7 (SD=1.0). For pant and shirt color, all of our participants rated
BodySLAM’s estimated colors as accurate.

7 SIMULATION STUDY
To explore how BodySLAM might scale to larger spaces and num-
bers of people (e.g., conferences, stadiums), we ran software simu-
lations in virtual rooms. We tested different virtual room sizes: 3x3,
10x10, 30x30 and 100x100 meters). We also varied the number of
people in the room, as well as their orientation behavior (random

Figure 8: Participant-assessed accuracy of their body pose,
along with automatic classification accuracy of hand and
mouth gestures.

body orientations or common focus body orientations – see Figure
9 for examples).

We used a 90° virtual camera field of view, matching an average
mid-tier smartphone camera. Maximum body registration range
was set to 14 meters, which we found to be the practical limit of
ArUco tag detection at HD camera resolution. We model users
as 50 cm circles that cannot be closer than 50 cm to one another,
though we note that we do not model occlusion. Each combination
of parameters was simulated 100 times, with detection statistics
averaged. Results can be seen in Figure 10 broken out by random
(A) and common (B) focus body orientations.

8 LIMITATIONS
The most immediate limitation of our approach is its heavy compu-
tational requirement. Running computer vision (pose modes and
ArUco detection) on mobile hardware is taxing. Our process runs
at around 12 FPS on an iPhone XR, much slower than native cam-
era frame rate, and more critically, has a noticeable lag for users
( 150ms; see Section 3.2). Note that this lag applies to BodySLAM
data only, and not the AR/VR graphics, which can run at full frame
rate. Nonetheless, a mismatch between e.g., a user seen in AR and
their body data could induce discomfort. Processing latency can
also produce incorrect 3D pose estimations due to out of sync
stereo correspondences. Fortunately, smartphone manufacturers
are increasingly including hardware accelerated deep learning ca-
pabilities, which should improve performance in the coming years.
For example, BlazePose [6] makes use of such optimizations and
can run at above 30 Hz on modern smartphones.

We also note that BodySLAM is limited by the field of view of the
rear-facing camera and occlusion in the environment. A user can
lose pose tracking if they are not in the field of view of any other
user. The likelihood of this occurring can be decreased by the use
of ultra-wide-angle cameras, which are becoming more common
in the market (e.g., Samsung S10 has 123° FOV, iPhone 11 has 120°).

Another issue with our current design is that the apparel color
estimation can only work for apparels with single colors. Thus large
printed designs and multi-colored apparels will lead to decrease in
accuracy. In such cases a texture based approach might work better

Figure 9: Two example simulated rooms, one with random
body orientations (left) and common focus body orienta-
tions (right). See also Figure 10 for accuracy results across
rooms of different sizes.
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Figure 10: Percentage of bodies captured for random (A) and common focus body orientations (B) in simulated rooms of
different size and occupant count.

than color estimation. Furthermore, since the color of the apparel
is extracted based on joint locations, it is more likely to work on
garments that fully cover the wearers’ body (and fail on e.g., short
shorts and crop tops).

As noted in Section 6.2, we could not not use an optical tracking
system for ground truth as it interfered with our computer vision
pipeline. Instead, we had human annotators subjectively rate each
keypoint as correctly placed or not (i.e., a binary rating), as opposed
to a continuous spatial accuracy metric such as euclidean error.
This experimental compromise permitted us to run a user study,
but at the expense of reporting precision. For some insight into
per-joint error, accuracy benchmarks on public datasets can be
found in [11, 31].

We also acknowledge that our use of ArUco for person detection
and relative 3D spatial localization is inelegant, requiring instru-
mentation of headsets or smartphones. Additionally, although we
have a tracker and time-to-live associated with each detected ArUco
marker, in cases of extreme occlusion and motion blur, this process
can fail in registering users. In such events markerless based ID
approaches could be used. For our mobile AR use case, face recog-
nition could be used to dispense with the need for an ArUco tag. In
our two headset form factors, the face is mostly occluded, and so
matching would have to occur based on body biometrics, apparel
and other person attributes as seen in deep learning based person
re-identification [24, 48].

Finally, our current implementation relies on the cloud to collect
and disseminate pose data, and also run advanced features such as
3D pose estimation using views from several users. This requires
internet connectivity and contributes almost half of our system’s
total latency. In the future, it could be that proximate devices create
ad hoc wireless networks to share pose information more directly
with others.

9 CONCLUSION
We have described our work on BodySLAM, which shows that it
is possible to use the existing cameras in AR/VR experiences to
opportunistically capture the bodies, hands, mouths and appear-
ance of participants in multiuser settings. This offers functionality

that would otherwise have to be achieved with additional special-
purpose sensors, either worn or installed in the environment. We
combine user studies with software simulations to evaluate how
well our system scales across rooms and group sizes. While there
are innate limitations of our ad hoc approach, its software-only
nature makes it unique in the literature.
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