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ABSTRACT 
Future homes and offices will feature increasingly dense  
ecosystems of IoT devices, such as smart lighting, speakers, 
and domestic appliances. Voice input is a natural candidate 
for interacting with out-of-reach and often small devices that 
lack full-sized physical interfaces. However, at present, 
voice agents generally require wake-words and device names 
in order to specify the target of a spoken command (e.g., 
“Hey Alexa, kitchen lights to full brightness”). In this  
research, we explore whether speech alone can be used as a 
directional communication channel, in much the same way 
visual gaze specifies a focus. Instead of a device’s  
microphones simply receiving and processing spoken  
commands, we suggest they also infer the Direction of Voice 
(DoV). Our approach innately enables voice commands with 
addressability (i.e., devices know if a command was directed 
at them) in a natural and rapid manner. We quantify the  
accuracy of our implementation across users, rooms, spoken 
phrases, and other key factors that affect performance and 
usability. Taken together, we believe our DoV approach 
demonstrates feasibility and the promise of making  
distributed voice interactions much more intuitive and fluid. 
Author Keywords 
Speaker orientation, addressability, voice interfaces. 
CSS Concepts 
• Human-centered computing~Human computer interac-
tion (HCI); User studies; 
INTRODUCTION 
Where a person is looking is an important social cue in  
human-human interaction, allowing someone to address a 
particular person in conversation or denote an area of  
interest. For several decades, human-computer interaction 
researchers have looked at using gaze data to ease and  
enhance interactions with computing systems, ranging from 
social robots [56] to smart environments [8]. However, to 
capture gaze direction, special sensors must either be worn 
on the head [15][57] (unlikely for consumer adoption) or  
external cameras are used [3][37] (which can be privacy  
invasive).  

In this research, we explored the use of speech as a  
directional communication channel. In addition to receiving 
and processing spoken content, we propose that devices also 
infer the Direction of Voice (DoV). Note this is different 
from Direction of Arrival (DoA) algorithms (Figure 1, red), 
which calculate from where a voice originated. In contrast, 
DoV calculates the direction along which a voice was  
projected (Figure 1, orange).  
Such DoV estimation innately enables voice commands with 
addressability, in a similar way to gaze, but without the need 
for cameras. This allows users to easily and naturally interact 
with diverse ecosystems of voice-enabled devices, whereas 
today’s voice interactions suffer from multi-device  
confusion (illustrated in Figure 2A). With DoV estimation 
providing a disambiguation mechanism, a user can speak to 
a particular device and have it respond; e.g., a user could ask 
their smartphone for the time (Figure 2B), laptop to play 
 music (Figure 2C), smartspeaker for the weather, and TV to 
play a show. Another benefit of DoV estimation is the  
potential to dispense with wakewords (e.g., “Hey Siri”, “OK 
Google”) if devices are confident that they are the intended 
target for a command. This would also enable general  
commands – e.g., “up” – to be innately device-context  
specific (e.g., window blinds, thermostat, television). 

As we will discuss in greater detail, our approach relies on 
fundamental acoustic properties of both human speech and 
multipath effects in human environments. Our machine 
learning model leverages features derived from these  
phenomena to predict both angular direction of voice, and 
more coarsely, if a user is facing or not facing a device. Our 
software is lightweight, able to run on a wide variety of con-
sumer devices without having to send audio to the cloud for 
processing (helping to preserve privacy).  
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Figure 1. Left: an illustration of Direction of Voice (DoV) vs. 
Direction of Arrival (DoA). Right: our approach allows devices 
(“smartspeaker” in foreground) to compute DoV (debug out-
put shown on laptop) without any external sensors, which could 
enable more robust and natural voice interactions, especially in 
contexts with many devices.  



RELATED WORK 
Our approach intersects with several different literature,  
including voice interfaces generally, as well as direction of 
arrival estimation and speaker orientation estimation.  
Voice Interfaces 
HCI researchers have long studied voice interfaces, dating 
back to seminal works such as “Put-that-there” [8]. For a 
comprehensive review, we recommend [41][42][43][52]. In 
recent years, voice interfaces have entered the mainstream in 
the form of smartphone assistants (e.g., Apple Siri, Google 
Assistant) and smart speakers (Google Home, Amazon 
Alexa, and Apple Homepod).  
Before understanding and executing a user's command, these 
voice interfaces need to infer whether the user is speaking to 
them. To help minimize false positive interactions and  
resolve target ambiguity, researchers have explored  
mechanisms such as wakewords [23] and approaches that  
localize speakers and estimate the direction of arrival of 
sounds, which we discuss in greater detail next. 
Direction of Arrival and Speaker Localization 
Estimating the direction of arrival of sounds dates as far back 
as World War I for detecting and tracking aircraft (with  
human observers listening via two or more large sound 
horns). Major approach categories include angle of arrival 
(AoA), time difference of arrival (TDOA), and frequency 
difference of arrival (FDOA), which work across radio,  
optical and acoustic signals (see [18][26] for an in-depth  
review). Most techniques use multiple receivers and  
cross-correlation algorithms [5][27][39], though non-heuris-
tic deep learning techniques are also possible [14][21][54]. 
When sensors can be distributed in an environment (i.e., not 
limited to the confines of one small device), techniques such 
as bi-channel sound-source localization (SSL) [30][31], mul-
tilateration [51][53] and multi-channel SSL [29][35] can be 
employed to localize the position of a signal source.  

More related to our present work are Direction of Arrival 
(DoA) algorithms. These generally use many microphones 
operating together as an array, but contained in a single de-
vice (e.g., a smartspeaker). DoA is inherently different from 
Direction of Voice – one way to conceptualize the  
difference is with a user standing in one position several  

meters away from a device but rotating their body to speak 
at different angles. In this case, the DoA will always be the 
same value, but the DoV will change. 

DoA and speaker localization unlock many interesting  
applications. For example, they can enable social robots to 
turn and reply to different users [32][44]. In multi-user  
collaborative scenarios, such as meetings, they can enable 
external devices such cameras to face the active speaker 
[59][61] and also enhance the quality of speech audio [24]. 
DoA is also intrinsic to solving source separation [4][40] and 
speaker diarization [38] that enable a plethora of applications 
on their own (see e.g., [10][17][22]).  

Speaker Orientation 
Most similar to this research are prior systems that infer 
speaker orientation, most often as additional metadata for 
speaker localization systems [36]. Almost all prior work uses 
multiple microphones distributed around a room. These  
include works such as [28][34][46] that make use of large 
microphone arrays (scores of microphones per room) to esti-
mate a speaker's yaw orientation. Works such as [2] and [49] 
show the number of microphones can be reduced by using a 
few small, T-shaped microphone arrays distributed in a room 
of known geometry. The latter two systems achieved an ac-
curacy of 37.3% and 76.8%, respectively, for predicting 
speaker head orientation in 1 of 8 classes (i.e., 45° segments).  

Most closely related to our approach are [33][54][60], which 
use a single, small microphone array placed in a room. Of 
note, [33] and [54] used loudspeakers to generate sounds (not 
humans) and data collection and testing are limited to a sin-
gle room, limiting generalizable insights. On the other hand, 
[60] is trained/tested across rooms and real humans (as is our 
system) offering a better estimation of real-world  
accuracy. The latter system serves as an excellent  
complement to our work in that the technical approaches are 
orthogonal. While [60] leverages deep learning (CNN-
LSTM), we pursue a featurization approach informed by the 
physics of sound propagation and the human vocal tract. 

THEORY OF OPERATION AND ML FEATURES 
Our development and investigations followed a principled 
approach, requiring an understanding of the fundamental 
physics involved (as opposed to a more “black box” machine 

 
Figure 2. Future smart homes and offices are envisioned to contain many “smart” devices able to respond to voice commands. How-
ever, without device-specific wakewords, multiple devices may try to respond to generic queries (left). Ideally, users would be able 
to face and speak to a device, more akin to human-human interaction (center & right). Thus, there is a need for Direction-of-Voice 
estimation approaches, especially those than can run locally on self-contained devices, without having to install extra sensors in the 
environment or rely on multi-device interoperability, which does not appear to be forthcoming in the near future.  



learning approach). This offers the benefit of interoperability 
of results, and more importantly, offers generalizable  
insights for future researchers and practitioners to apply in 
their own systems. 

Voice Frequency Distribution 
The first property we leverage is that the distribution of  
human speech frequencies varies by spoken angle. There are 
two key effects: 

Foremost, due to the complex operation and geometry of the 
human vocal tract, voice frequencies are not uniformly  
distributed across the acoustic “field of view” even just  
outside the mouth [16]. Specifically, higher frequencies are 
more rapidly attenuated off-axis. Secondly, and closely re-
lated to the previous effect, is the fact that once voice has left 
a speaker’s mouth, higher frequencies are more  
directional [7], carrying with greatest amplitude in their 
emitted direction, while lower frequencies spread out in a 
more omnidirectional fashion.  

Both of these effects come together and manifest as a  
characteristic imbalance between high- and low-frequency 
voice bands, (“high-low band ratio”, or HLBR, in the  
literature [1][48]). Put simply, if a voice is directed at a  
microphone (i.e. facing), high and low voice frequencies are 
present. However, if we receive a sound when a user was 
facing another direction, or if the sound has had to echo to 
reach the microphone, we typically see reduced high  
frequencies compared to low frequencies. An illustrative ex-
ample can be found in Figure 3. 

More specifically, we calculate the following features to  
capture aspects of HLBR: sum power of low frequencies (< 
7 kHz), sum power of high frequencies (> 7 kHz), ratio of 
the latter two values, the 4 coefficients of a three-degree  
polynomial fit to a 128-bin FFT, and the 2 coefficients of a 
linear regression fit to a 128-bin FFT. These features alone 
are not sufficient for robust DoV estimation, as HLBR ef-
fects are most apparent when comparing two signals when 
all other factors are held constant (such as speaker, distance 
and utterance). Nonetheless, it offers useful and complemen-
tary information when used in concert with the other ma-
chine learning features we employ, described next. 

Crispness of First Wavefront 
Built environments introduce characteristic multipath effects 
[7]. When a user speaks towards a device, the first, loudest, 
and least-distorted signal to arrive is the original sound, 
which took a direct path (i.e., shortest path and time). All 
subsequent signals are echoes (assuming single speaker, a 
limitation we discuss later), having scattered off of various 
surfaces in the environment – these signals are delayed, qui-
eter, and more distorted. This effect is apparent to the naked 
ear, and we encourage the reader to play our Video Figure 
with headphones. Figure 3 offers a visual example. 

To take advantage of this effect, we need metrics that capture 
the “crispness” (i.e., “reverblessness”) of a signal. First, and 
most straightforward, is to run autocorrelation on the sound. 
If we receive a “facing” sound that came first and directly to 
the microphone, there should be no echoes on which to  
correlate against in the first few milliseconds of audio.  
However, if the sound has bounced and scattered off of other 
surfaces before reaching the microphone, we typically see 
duplicated overlapping waveforms, which manifest as small 
peaks in the autocorrelation. To capture this for machine 
learning, we use the ratio of the max peak and the average of 
all other peaks within ±10ms, the ratio between the max peak 
and average of the next highest nine peaks, the standard  
deviation and area under the curve of the autocorrelation, and 
the standard deviation and area under the curve of the  
absolute first derivate autocorrelation. As an additional 
measure of reverb, we calculate the speech-to-reverberation 
modulation energy ratio (SRMR) [20]. 

Our smartspeaker-esque test device contains four  
microphones, offering six pairings on which to run more  
advanced correlations. For this we use Generalized Cross-
Correlation with Phase Transform (GCC-PHAT [9][25]), 
which has been shown to be more robust to DoA, reflections, 
reverberations and noise [5][48][49]. We compute all six 
GCC-PHAT correlations (i.e., all pairs of our four  
microphones) and crop ±0.236ms (which represents the  
maximum theoretical delay based on the distance between 
orthogonal microphones) around the max peak. We then take 
the raw GCC output as features, as well as the max peak 
value, max peak index (i.e., delay between channels), and 
area under the curve. For the latter three values, we compute 

 
Figure 3. Example waveform, FFT, and cross correlation for an example “facing” and “not facing” trial (all other factors same). 



the standard deviation, range, and mean across all six GCC-
PHAT correlations. We also use GCC-PHAT to calculate 
TDOA as another feature.  
IMPLEMENTATION 
Our test hardware consists of a ReSpeaker USB 4-channel 
microphone [45] made by Seeedstudio (visible in foreground 
of Figure 1). We use a MacBook Pro with 16 GB of RAM 
and a dual-core Intel i5 processor @ 3.1G Hz for audio  
processing and classification. We configured the ReSpeaker 
to transmit five audio streams at 48 kHz sampling rate to our 
laptop over USB. Four of the channels are raw microphone 
audio, with the fifth channel containing processed audio for 
Automatic Speech Recognition (ASR). 

We use a Python backend for data collection, signal  
processing, and machine learning. For our machine learning 
algorithm, we use an Extra-Trees Classifier (sklearn  
implementation with 1000 estimators). We train our  
classifier across all eight angles of the direction of voice to 
mitigate class imbalance and bin the output predictions based 
on the facing definition we are testing. This approach  
performed better than training with class weights for class 
imbalances and also provided us with a global classifier  
rather than individual classifiers, which would be prone to 
overfitting to the test condition Our ML model had an  
average latency of 107 ms, which included signal processing 
and prediction.  

We tested several other classifiers, such as bagging  
classifiers, SVM, and neural networks and found that  
ensemble-based decision trees work the best. Although  
neural networks with deeper layers achieved similar  
performance on the same feature set, we chose Extra-Trees 
due to their computational efficiency and interpretability. 

DEFINITION OF “FACING”   
There is no universally accepted definition of what  
constitutes “facing” a direction. Clearly someone oriented 
perfectly towards a person or object (i.e., 0° off-axis) would 
be considered facing, but what about angled ±10° or ±45°? 
Rather than select an arbitrary definition, we decided to run 
a small investigation to explore possible definitions. This  
pilot study also offered some preliminary insights into how 
well humans can estimate direction of voice (even at  
unambiguous speech angles, such as 0°).  

To collect data, we recruited two pairs of participants (3 
male, 1 female; mean age of 26). A “listening” participant 
stood in the middle of a 3x3 polar grid (distances = 1, 3 and 
5m; radial angles = 0, 45 and 90°), illustrated in Figure 4. At 
each grid intersection (pink circles), 8 angles were marked 
on the floor (blue arrows), spanning 360° in 45° intervals (0° 
= facing straight towards the listener, depicted by black  
arrows in Figure 4).   

Twenty random grid positions and speech angles were  
requested per “speaking” participant. Once situated at each 
location and angle, they spoke the phrase “the quick brown 
fox jumped over the lazy sheep”. The “listening” participant 

then stated aloud whether they thought the speaker was  
“facing” or “not facing” them. (In an even earlier pilot  
experiment, we had participants guess the direction of the 
voice vector by pointing with their fingers, but we found this 
procedure to be very confusing and challenging for users, 
and so we simplified to the binary choice of facing/not  
facing).  

To mitigate the listener picking up on cues other than the 
spoken phrase, they were blindfolded throughout the data 
collection period, and wore noise-canceling headphones  
between trials (e.g., to hide footfalls and other noises  
generated by the speaking participant). Only when the  
speaking participant was fully situated and ready to speak the 
utterance were the headphones removed.  

When all 20 trials were completed, the participants swapped 
“speaking” and “listening” roles and the experiment  
repeated. To collect more data, we had our participant pairs 
repeat the same procedure in another larger room with  
different acoustics. In total, this process yielded 160 trials. 

The results of this data collection are shown in Table 1. Even 
when the speaking participant was directly facing the listener 
(0°), the listener incorrectly reported the phrase as  
“not facing” in 5.9% of trials. At spoken angles of ±45°  
relative to the listener, our participants reported this as  
“facing” 61.9% of the time. This result suggests that facing, 
at least acoustically, has some angular variance in human 
perception. At ±90°, just 4.6% of trials are reported as facing, 
a precipitous drop that suggests something distinct is  
happening acoustically (in line with our theory of operation). 
At ±135°, 4.6% of trials are reported as facing, and at 180°, 
no trials are reported as facing. 

From these findings, we derived three working definitions of 
“facing”: 

• Directly Facing: 0° is facing; all other angles are not facing. 
• Forward Facing: +45, 0 and -45° are considered facing; all 

other angles are not facing. 
• Mouth Line-of-Sight: +90, +45, 0, -45, -90° are considered 

facing, all other angles are not facing. 

To provide the most generalizable results, we report our  
system’s accuracy under all three of these definitions in our 
later evaluation. We also plot system performance alongside 

Spoken Angle Reported “facing” Reported “not facing” 
0° 94.1 % 5.9 % 

45° 63.2 % 36.8 % 
-45° 61.5 % 38.5 % 
90° 9.1 % 90.9 % 

-90° 0.0 % 100.0 % 
135° 9.1 % 90.9 % 

-135° 0.0 % 100.0 % 
180° 0.0 % 100.0 % 

Table 1. Participant responses for a pilot study looking at  
human perception of what spoken angles constitute “facing”. 



human accuracy under the same definitions as a useful, but 
obviously preliminary benchmark given our small number of 
participants. 

EVALUATION 
There are many variables that could affect the accuracy of 
our Direction-of-Voice estimation approach, including  
robustness across people, time, utterances, rooms, device 
placement, user position and spoken angle. In order to  
analyze our performance across these factors, we collected 
data across:  

• 10 participants (4 male, 6 female, mean age 20) 
• 2 sessions (run back-to-back, but otherwise independent in time) 
• 2 utterances (“hey assistant” and “the quick brown fox jumped 

over the lazy sheep”) 
• 2 rooms (24.3×9.1×4.0m classroom and 13.7×6.1×3.6m office) 
• 2 devices placements (<50cm and >2m away from wall) 
• 3 user distances (1, 3 and 5 meters) 
• 3 user polar positions (0, 45 and 90°) 
• 8 spoken angles (0, +45, -45, +90, -90, +135, -135 180°) 

This full factorial study design (10×2×2×2×2×3×3×8) 
yielded 11,520 multi-channel audio recordings (350+ mins 
of audio). The 3 speaker distances, 3 speaker polar positions, 
and 8 spoken angles followed the same design as our study 
in the Definitions of Facing section (Figure 4). Rather than 
have a human stand in the center of the polar grid, we placed 
our ReSpeaker microphone, connected over USB to a laptop 
where all recording and processing occurred.  

To streamline data collection over so many combinations, 
the order of polar distances and positions were randomized, 
but then once the participant was standing at that spot, data 
for all 8 angles and both utterances were collected. This  

constituted one session of data collection, which was then 
repeated to provide two equivalent, but independent  
sessions. Finally, the above procedure was repeated for the 2 
rooms, within which there were 2 device placements. In total, 
this study took 2 hours per participant, who were compen-
sated $20 for their time. 

OPEN SOURCE DATA 
To enable other researchers to explore this domain, we have 
made our study data freely available at https://github.com/ 
FIGLAB/DirectionOfVoice with the gracious permission of 
our participants. 
RESULTS AND DISCUSSION 
We designed our study procedure in order to systematically 
isolate and analyze different factors. We now describe our 
main findings, broken out into sections, using the  
aforementioned definitions of facing. 

Machine Learning and Feature Importance 
We calculated the relative importance of our machine  
learning features via their information entropy. We found 
that those responsible for characterizing the crispness of the 
first wavefront had the highest information entropy, followed 
by voice frequency distribution, and finally the echoes of 
sound. However, all features contribute to our global model 
and provide value in different physical settings.  
Overall Accuracy 
To estimate the overall accuracy of our system, we  
performed a leave-one-out cross validation by training on all 
data (across people, utterances, rooms, device placements, 
user distance/position and spoken angle) from one session 
and testing on the second (hold-out) session.  

Using our “directly facing” definition, our system had an  
accuracy of 93.1% (F1 score = 0.83), which is comparable to 
our prior human accuracy result. Under “forward facing” and 
“mouth line-of-sight” definitions, our system was 92.0% (F1 
score = 0.91) and 87.3% (F1 score = 0.86) accurate, respec-
tively. Note that the test set classes are imbalanced, so it is 
also important to consider zero classifier accuracies, which 
are 87.5% (F1 score = 0.47), 62.5% (F1 score = 0.38; i.e., it 
always chooses the majority class of not facing) and 62.5% 
(F1 score = 0.38, i.e., it always chooses the majority class of 
facing) across the facing definitions respectively.  

For both brevity and clarity in all subsequent sections, we 
only report accuracies under our “forward facing” definition. 
We selected this as the accuracy metric as it contains a more 
balanced distribution of facing vs. not facing classes and  
offers a middle ground metric between “directly facing” and 
“mouth line-of-sight” definitions. Note that full results (with 
all three facing definitions) can be found in Figure 5.  

Cross Utterance Accuracy  
To test robustness across utterances, we train our system on 
all data for one utterance and test on the other utterance, a 
similar leave-one-out protocol as used previously. Such a 
procedure gives us a preliminary understanding of how DoV 
could generalize across many phrases. We found that our 

 
Figure 4. Illustration of data collection layout. The “listening” 
user or device lies in the center (green). From this point extends 
a polar grid at 1, 3 and 5 meters (red lines) and 0, 45 and 90 
degrees (orange rays). Intersections denote the 9 positions 
where “speaking” participants stood (pink circles). At each lo-
cation, data was collected at 8 angles (blue and black arrows). 
0° is directly facing the device (black arrow), with +45, +90 
+135 and 180° proceeding clockwise, and -45, -90 and -135° 
proceeding counterclockwise from 0°.  



system achieved a facing / not facing accuracy of 88.4% (F1 
score = 0.87).  

As discussed in Theory of Operation, we purposely  
engineered our machine learning features to be utterance  
independent. To explore how successful we were, we ran a 
Linear Discriminant Analysis (LDA) for both test utterances 
(Figure 6). As can be seen, there is little difference in the 
distribution (and thus separation boundaries would be  
similar), a positive result suggesting generalizability. 

Cross People Accuracy  
We also wished to test our system’s ability to generalize 
across people, without any prior per-user calibration. This is 
generally a high bar, and even highly engineered commercial 
systems, such as the Google Assistant, recommend providing 
spoken examples. To assess this, we performed a leave-one-
participant-out cross validation, combining data from all 
other factors. Facing / not facing accuracy stands at 83.9% 
(SD=0.03; F1 score = 0.82). This is just 4.5% lower than our 
cross-utterance accuracy, where the model was able to train 
on a user’s data (though a different utterance, which is more 
like the Google Assistant setup process). 

Cross Room and Cross Device Placement Accuracy 
To investigate accuracy across rooms and device placement, 
we follow a similar procedure as above: a leave-one-room-
out and leave-one-placement-out cross validation, such that 
the model has no prior data about the room or placement it is 
tested in. However, we note that while smartphone assistants 
are mobile, smart speakers are generally stationary, and thus 
would have ample opportunity to build a per room model 
(which we discuss in the next section).  
Our system achieved a cross-room accuracy of 82.1% (F1 
score = 0.79) and cross-placement accuracy is 82.8% (F1 
score = 0.80). We also ran an LDA (Figure 7) to help  
visualize how different rooms and device placements  
manifest in our machine learning feature set. While there are 
subtle differences, there is no systematic pattern, and helps 
explain why the accuracy results are within 1% of each other. 

Per Room Accuracy   
In this analysis, we trained on all session one data for a room 
and tested on all session two data for that room (and vice 
versa, averaging the results). This simulates a “calibrated” 
model that has in situ training data. We note that commercial 
devices, such as the Apple HomePod, run a calibration step 
to capture the impulse response of a room to improve audio 
processing. It is thus unsurprising that in this train/test  
procedure, our system achieves its highest accuracy: 92.6% 
(F1 score of 0.89).  

Per Device Placement Accuracy 
We hypothesized that placing a device near to a wall would 
have a deleterious effect on accuracy, introducing excessive 
multipath interference. Our study data let us test this theory, 
and the results show no significant effect. Specifically, we 
trained on all session one data for a device placement and 
tested on all session two data for that placement (and vice 
versa, averaging the results). We found a mean “against 
wall” accuracy of 91.7%, and a mean “away from wall”  
accuracy of 92.6%. This result matches our Cross Rooms & 
Device Placement Accuracy results, and also the LDA in 
Figure 7.  

Speaker Distance and Polar Position 
We found that speaker polar position had no effect on facing 
/ not facing accuracy. This is not the case for distance, which 

 
Figure 6. LDA of two utterances at 1m. 

 
Figure 5. Accuracy (%) across three facing definitions and six study factors. We also include a human accuracy benchmark.  
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has a prominent effect, with accuracy degrading as distance 
increases. To formally test this, we trained a model on all 
session one data for a distance, and then tested on all session 
two data for that distance (and vice versa, averaging the  
result). Results show accuracy at 1 meter away is 96.8%, 
dropping to 93.0% at 3m, and finally to 88.5% at 5m.  
Looking at information loss, we find that features derived 
from voice frequency distribution drop the most at longer 
distances. As with our other analyses, we ran an LDA (Figure 
9). This time, the effect of speaker distance is pronounced, 
with separation between DoV classes almost non-existent at 
5m (and presumably beyond). 

This also underscores the potential to improve DoV accuracy 
by training distance-aware classifiers that make use of  
state-of-the-art techniques for sound source localization [58].  

Per Angle Classifier 
Our study data also permitted us to evaluate a model that  
predicts DoV angle (8 classes), and not just binary facing vs. 
not facing. This is a considerably harder classification task, 
and as noted earlier, when we attempted to give this task to 
participants in a pilot test, we were met with confusion and 
frustration. To create such a model, we trained a model on 
all session one data for an angle, and then tested on all  
session two data for that angle (and vice versa). Note that 
“all” means data across all rooms, people, utterances, device 
placement distances, and positions.  

Overall, our system is able to predict DoV angle with an  
accuracy 65.4% (prior probability is 12.5%), exceeding our 
expectations, though not yet accurate enough for user-facing 
applications. We also ran equivalent analyses for cross  
utterance (57.6%), cross people (43.5%) and per room 
(67.9%). Confusion matrices for these results can be found 
in Figure 8.   

We find that most of the confusion is caused by angle classes 
adjacent to one another (e.g., 45° and 90°), but less so with 
symmetric angles (e.g., 45° and -45°). The extreme  
“not facing” angles of -135°, +135° and 180° also have a lot 

 
Figure 7. LDA of room × device placement at 1m. 

 
Figure 9. LDA at 1, 3 and 5m speaker distances. 

 
Figure 8. Confusion matrices for per angle classification 

across different study factors.  



of confusion, which is also visible in the LDAs in Figures 6, 
7 and 9. It is likely there is not much discernable difference 
in the latter signals, as voice frequency features drop in value 
past ±90° and reverb effects from the environment will be 
roughly equivalent, having to bounce off opposing walls and 
objects before reaching the device.  

In comparison to prior work, [49] achieves an accuracy of 
76.8% on the same eight-angle classification task, however 
it makes use of six T-shaped microphone arrays (each with 4 
mics) distributed across a room of known geometry. [60] 
uses a single compact microphone array similar to our work 
and reports an average orientation error of ±40° when trained 
and tested in the same room (cross user), and ±57° when 
tested in different rooms (cross user). 

LIMITATIONS AND FUTURE WORK 
It is important to note that while our system has promising 
results, there are several key limitations that will need to be 
overcome before consumer use. First is the accuracy of the 
system itself. Our model can distinguish between speakers 
facing and not facing a device at ~90% accuracy. If we  
assume a device can calibrate on data from its room and 
owner, accuracy rises to ~93% While approaching  
feasibility, it does fall short of the 99%+ accuracies  
consumers have come to expect, though they are perhaps 
more forgiving with voice interfaces. Nonetheless, 93%  
accuracy is the best result in the present literature and  
constitutes an important step towards feasibility.  

Another potential use of DoV and facing / not facing  
recognition (if it is not used directly as a waking trigger) is 
to combine its confidence with wakeword confidence to  
increase robustness to false positive triggers. Thus if  
wakeword confidence is low (e.g., “Hey Sarah”, but not 
“Hey Siri”), but it was spoken with high confidence towards 
a device, the voice agent might still decide to activate.  

We also make the basic assumption that facing a device  
signals intent for interaction via voice. However, this is not 
always the case, and infeed users can interact with voice-first 
interfaces while focused on another task (e.g., cooking) or 
even from an entirely different room. That said, it is less 
common for users to speak directly towards a voice-first  
device if there is no intention to interact with it.  

We also acknowledge that our current implementation does 
not attempt multiple speaker DoV, which would preclude its 
use in highly social settings (restaurant, birthday party). It 
may be that speaker diarization algorithms, able to isolate 
and extract speech at varying DoAs, could be brought to bear 
on this problem. Additionally, robustness in noisy environ-
ments remains a future challenge.  

In the future, we hope to explore applications beyond device 
addressability and disambiguation. For instance, DoV could 
be used in social extended reality to facilitate richer  
communication between participants. It could also be used to 
enhance hearing aids by selectively amplifying speech  
directed at the user. We also envision DoV being used in  

conjunction with existing body and head pose systems  
(optical, RF, etc.) to boost their accuracies.  

CONCLUSION 
We have presented an angular direction of voice estimation 
system using features that leverage human voice frequency 
distributions and characteristic multipath effects in human 
environments. We comprehensively analyze the efficacy of 
our system across various factors such as people, time,  
utterance, room, device placement, user position and spoken 
angle. Our approach is lightweight, software-only and could 
run on a plethora of consumer devices without having to 
transmit audio data to the cloud. We also make our data open 
to researchers and practitioners, which we hope spurs future 
algorithmic efforts. 
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