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ABSTRACT

We propose a geometrical method, applied over eye-specific
features, to improve the accuracy of the art of eye-center lo-
calization. Our solution is built upon: (a) checking radially
constrained gradient vectors, (b) adding weightage to iris spe-
cific features and (c) considering bi-directional image gradi-
ents to eliminate errors due to reflection on pupil. Our system
outperforms the state of the art methods, when compared col-
lectively across multiple benchmark databases, such as BioID
and FERET. Our process is lightweight, robust and signifi-
cantly fast: achieving 50-60 fps for eye center localization,
using a single threaded approach on a 2.4 GHz CPU with no
GPU. This makes it practicable for real-life applications.

Index Terms— eye, eye center, localization, geometry
based approach, radial mapping

1. INTRODUCTION

Several techniques, both intrusive and non-intrusive, exist
for eye center localization. Special equipments, such as ac-
tive infrared illumination, eletrooculography (EOG), scleral
search coils and head-mounted devices, can be used only un-
der constrained setting, with different degrees of intrusive-
ness. Hence these are not viable in real-life applications.

Image-based approaches that use non-specialized equip-
ment under non-intrusive settings, are affordable and usable
in real-life settings. These would allow for free head move-
ments, and detect the eye center in spite of different angles of
position with respect to the camera capturing the eye image.
Image-based approaches avoid special hardware, but call for
development of challenging image-processing algorithms.

Algorithms for eye center localization tend to follow one of
the following approaches [1]. (i) Shape-based approaches ap-
proximate eyes as a simple elliptical shape, or a more complex
shape with a template, such as a deformable eye model com-
prising of two parabolas representing eyelids, a circle repre-
senting the iris etc [2,3]. (ii) Feature-based approaches use the
typical human eye characteristics to identify a set of distinc-
tive features around the eyes, such as eye corners, iris, pupil,
eyelids, cornea reflections etc [4, 5]. (iii) Appearance-based
methods detect eyes based upon the photometric appearance
characterized by color distribution or filter responses of the
eye and surroundings [6, 7]. (iv) Hybrid models combine

multiple other model types, attempting to overcome the short-
comings faced by each of these model types [3,8]. Some other
works exist, exploring eye detection under active infrared il-
lumination, symmetry operators and blink and motion.

We propose a geometry-based approach, based upon a spe-
cific set of eye features involving the iris and pupil. We create
a four-stage process. First, we preprocess, performing his-
togram equalization for image intensity normalization to im-
prove image contrasts. Second, we perform adaptive skin
color thresholding, based on differential analysis of the im-
age intensity to remove the homogeneous regions of the skin
and limit our region of interest. Third, we extract isocentric
and radial curvature based patterns of the iris, restrict-
ing our points of consideration within the expected eyeball
radius values and considering the annulus design of the iris,
improving both speed and accuracy. Fourth, we consider the
gradients directed inwards, towards the eye pupil. This sig-
nificantly reduces errors in cases where the pupil is brighter
than the iris, such as light reflecting on the pupil.

We test with two popular databases: BioID [9] and FERET
[10], and also test on the lesser-explored Talking Face Video
database. Note that, Ge et al. [11] (95%) and Zhou et al. [12]
(93.8%) claim higher accuracies on BioID compared to ours
(92.06%). However, they do not test across multiple datasets,
such as FERET or other databases. The former reports merely
cross-validation results within BioID, with no separate testing
dataset, making the study rather incomplete. The latter tests
only on a part of the BioID database, showing results only on
1,251 images out of the available 1,521, surprisingly ignoring
the remaining images. Further, it needs prior annotation for
performing inference, which is impractical in real life.

Kroon et al. [13] provide reliable and accurate results
across datasets. Our method also works well across datasets,
across image sizes and resolutions, without any additional
adaptation, and is accurate, outperforming Kroon [13] in most
test conditions. We achieve a speed of 16 ms for detecting eye
center pairs. Our algorithm, being accurate, robust, fast, light-
weight and scale-invariant, can be used as a building block for
applications that rely on eye center localization.

2. MODEL CONSIDERATIONS

Basic Definitions: Let c be a possible center and gi the gradi-
ent vector at position pi. Figure 1 shows examples of inward



and outward gradients. Then, at the eye center, the normalized
displacement vector di will have the same orientation with the
gradient vector gi. We define di and gi as:

di = (pi − c)/|(pi − c)|

gi =
(
δI(xi, yi)/δxi, δI(xi, yi)/δyi

)T
For each pixel pi, we compute the square of dot product

of the displacement vector di (between the potential center c
and the point pi), and the image gradient gi (at point pi). The
position of c, where most of the image gradients intersect, is
the probable eye center. [14] [15]

(a) Inward gradient (b) Outward gradient

Fig. 1. Inward and outward gradients

2.1. Preprocessing for Normalization

We first detect the face using the well-accepted Viola and
Jones face detector [16]. Based on the position and size of the
detected face, we extract rough eye regions of interest. We use
histogram equalization on the low-resolution images (images
with face size less than 100 × 100), to spread the contrast
distribution of the data throughout the spectrum equally by
using a Cumulative Distribution Function (CDF) [17]. This
increases the visibility of low resolution images while retain-
ing the sharpness of the higher resolution ones, and therefore
increases the accuracy of our system.

2.2. Adaptive Skin-Color Thresholding

Based on the skin color of the presented image, we carry out
an adaptive thresholding process, to remove the homogeneous
regions of the skin. This eliminates the points lying on the
skin rather than inside the eye, limiting our region of interest,
and hence (i) reduces the potential for errors and (ii) reduces
the number of points to process, improving execution speed.

To perform adaptive skin-color threshold by differential
analysis of image intensity, we compute the mean and
standard deviation of the matrix comprising of the mag-
nitude of the gradient vectors. Gradient magnitudes sig-
nify the differences between the pixel intensities. Two
adjacent pixels will have similar magnitudes unless they
have a sharp contrast, such as the darker pupil and iris
on the lighter sclera or skin. We set a dynamic threshold
as mean + (standardDeviation ∗ stdDevFactor), where
stdDevFactor represents a correction constant. We discard
all gradient vectors below this threshold. The process is in-
herently adaptive, as the threshold value varies for each given

image, and is determined by the gradient vectors specific to
that image. For experiments, we use stdDevFactor = 14 as
the optimal value (observing over a range from 0.1 to 35).

2.3. Radius Based Cutoff: Prior Knowledge of Iris

The radius of the iris is close to an anatomical constant
(around 7 mm) [18], and the radius of the eyeball ranges 12-
13 mm according to anthropometric data [19]. We use this
premise to implement radius based cutoff strategy. We only
check the points within the eyeball, as the points outside can-
not contain the eye center.

We note that, presence of light sources or strong reflections
may inhibit the pupil to appear as the darkest point in the eye
images, and may even be the brightest in some cases. How-
ever, the iris is always darker than the sclera, and surrounds
the pupil. Hence, we assign a high weight to the points sur-
rounding the eye center and within the iris radius based cutoff
region, leveraging the annulus nature of the iris. The weighted
matrix is calculated by applying a Gaussian Filter to the in-
verted preprocessed image of the eye ROI. This also reduces
errors due to dark zones, as eyebrows, eyelashes and hair.

2.4. Gradients of the Inward Direction

In case of reflections or the light shining off the optic nerve,
the iris will be darker than the pupil. To further tackle such
cases and extract the isocentric pattern of the eye Figure 1,
we take the gradient vectors that are inwards and opposite
to the direction of the displacement vector (directed towards
the pupil of the eye). After applying the weighted Gaussian
blur that smoothens and darkens the high intensity parts of the
image, the iris will be further darker compared to the pupil.
Therefore, in such cases, considering the gradients gi in the
inward direction will point towards the probable center.

Thus, we have, a set of pixel positions after adaptive thresh-
olding P , a calculated eye center c∗, probable eye centers c,
normalized displacement vector di, normalized gradient vec-
tor gi, total number of pixel positions in the image N , radius
of the eyeball R, radius of the iris r, weight given to cen-
ter based on darkness wc, weight assigned to points within
iris cut off based on darkness f(wp), and weight assigned to
points based on distance from c as f(d). The optimal cen-
ter c∗ of a circular object in an image with pixel positions pi,
i ∈ {1, ..., N}, is calculated as:

c∗ = argmax
c

1

N

N∑
i=1

wc + f(wp)

f(d)

(
di

Tgi

)2

(1)

Our overall methodology is captured in Algorithm 1.

3. EVALUATION

For experiments, we use a hardware configuration of Inter
Pentium CPU 2020M @ 2.40 GHz and 4 GB RAM.



Algorithm 1 OUR ALGORITHM

1: output(p ∈ {1, ..., N}) = 0
2: for i ∈ P do
3: for c ∈ {1, ..., N} do
4: if |c− pi| > R then
5: continue
6: end if
7: di = (pi − c)/|(pi − c)|
8: gi = (δI(xi, yi)/δxi, δI(xi, yi)/δyi)

T

9: gi = gi/|gi|
10: if |c− pi| ≤ r then
11: f(wp) = wpi

12: f(d) = 0.8
13: else
14: f(wp) = 0
15: f(d) = 1.0
16: end if
17: output(c)+ = ((wc + f(wp))/f(d)) ∗ (dTi gi)2
18: end for
19: end for
20: optimalCenter = argmax

c
((1/N) ∗ (output))

21: Output: optimalCenter as c∗

3.1. Dataset Description

We run experiments on BioID [9], FERET [10] and Talking
Face Video [20] databases. BioID is a collection of 1,521
gray-scale images, with the left and right eye centers anno-
tated, across 23 different individuals, with varying locations,
illumination, camera angles, scale and head pose. The color
FERET database contains a total of 11,338 facial images col-
lected by photographing 994 subjects at various angles. Out
of this, 2,409 images are present in the frontal face (fa) and al-
ternate frontal face (fb) partitions of the database, and thereby
have a frontal view of the eyes present in the images. We test
on this subset. We also test on the Talking Face Video [20],
comprising of 5,000 image sequences of a person, designed
to model the behavior of the face in natural conversations.

Normalized Error: We use the convention of measuring
the normalized error, which has been the widely accepted
form of error reporting in the literature of eye center local-
ization. The measure of normalized error was introduced by
Jerosky et. al. [23]. It estimates the error obtained by the
worst of both eye estimations, measured as:

e ≤ 1

d
max(el, er) (2)

Here el and er are the Euclidean distances between the es-
timated and the actual left and right eye centers. The distance
between the actual eye centers is denoted as d. e ≤ 0.25 ≈ is
the distance between eye center and eye corners, e ≤ 0.10 ≈
the iris diameter and e ≤ 0.05 ≈ the pupil diameter.

Method e ≤ 0.05 e ≤ 0.10 e ≤ 0.25 AR
Database: BioID

Valenti [3] 86.09%(5) 91.67%(6) 97.87%(5) 5.3
Fabian [14] 82.5%(6) 93.4%(5) 98.0%(4) 5
Yi [21] 86.5%(4) 99.1%(2) 99.6%(3) 3
Kroon [13] 92.3%(2) 97.9%(4) 99.9%(2) 2.6
Our 92.06%(3) 97.96%(3) 100%(1) 2.3
Zhou [12] 93.8%(1) 99.8%(1) 99.9%(2) 1.3

Database: FERET
Valenti [3] 74.38%(1) 96.27%(3) 99.17%(3) 2.3
Kroon [13] 65.7%(2) 97.6%(2) 99.6%(2) 2
Our 64.57%(3) 98.25%(1) 99.87%(1) 1.6

Database: Talking Face Video
Pang [22] NA 96.2(2)% NA 2
Our 94.78%(1) 99%(1) 99.42%(1) 1

Table 1. Performance of different eye center localization
methods on various databases. AR→ Average Rank.

Database Resolution e ≤ 0.10 e ≤ 0.25
FERET 512X768 98.25% 99.87%
FERET 256X484 98.34% 99.95%
FERET 128X192 96% 99.5%
BioID 384X286 97.96% 100%
Talking Face Video 720X576 99% 99.42%

Table 2. Performance of our method across image resolutions

3.2. Characteristics of Our System

We provide a comparative performance measurement of the
existing methods and our method on Table 1. The character-
istics of our system are the following.
Accuracy: We test on the well-accepted BioID and FERET
databases, as well as the lesser-explored Talking Face Video
database. The works by Ge et al. [11] and Zhou et al. [12]
claim higher accuracies compared to ours, on the BioID
database. However, [11] (accuracy 95% for e ≤ 0.05) per-
form only cross-validation and no test on unseen data, and
is thereby prone to over-fitting. They also test on no other
database or on real-life, thereby raising questions on model
portability and variance with image scale. And [12] (accuracy
93.8% for e ≤ 0.05) learn on an external dataset of 12,344
near-frontal images, but test only on a part of BioID, on
1,251 images out of 1,521, surprisingly ignoring the remain-
ing. They further depend upon prior annotation of eye cor-
ners. Neither of the two works validate on any other bench-
mark database. This raises questions of practical portability
and reliability of these studies.

Note that, as also pointed by [3], the annotation in the color
FERET database is sometimes unreliable. Figure 3 shows
some examples. Clearly, the ground truth labels of the pupil
are often inaccurate, and are marked within the iris. Hence,
our method yields (and other approaches also yield) high ac-
curacies on FERET at e ≤ 0.10 and e ≤ 0.25, but under-



(a) Eyebrow error (b) Eyelash error (c) Eye corner error (d) Miscellaneous error: wrinkles

Fig. 2. Errors committed by our system on BioID. True eye center positions are in green and positions we estimate are in blue.

performs (64.57%) for e ≤ 0.05 (Table 1). It is visibly ob-
vious from Figure 3 that our method gives more accurate es-
timates of the eye center compared to the (often erroneous)
ground truth labels, for e ≤ 0.05.

Fig. 3. FERET database. Green dots: Ground truth. Blue
Dots: Estimated values from our method.

As shown on Table 1, our average rank is the best
for FERET and Talking Face Video databases, and the
second-best for the BioID database, ignoring the mere cross-
validation based work by Ge et al. [11]. However, since the
work by Zhou et al. [12] provides results only on a part of the
BioID database, our system is practically the best for BioID
also. Thus, for all practical purposes, across image scales, and
across databases, our system is the most accurate one, among
the ones can be used under practical settings.

Execution speed and stability: Our system is stable, and
fast enough to use in real-life applications such as gaze track-
ing. Our methodology was able to scale to anywhere between
50-60 images (frames) per second using a single threaded ap-
proach, without GPUs. Systems using shift clustering and
classifiers are not as stable and effective, when required to
process a large number of frames per second. This gives our
system a significant advantage over such other systems.

Simplicity of computation: Since our system does not use
classifiers or clustering, and only uses geometrical features, as
well as because of the cutoff and filtering, the practical load of
computation is significantly lower on our method, compared
to the other systems having comparable accuracy.

Scale invariance: Our system is scale invariant. Experiments
show that our method performs well across different image
resolutions over different databases (Table 2). The execution
speed, accuracy, scale invariance, stability and low computing
resource loads, makes our method usable in practical applica-
tions, including resource-constrained mobiles.

3.3. Error Analysis

We perform a detailed error analysis on all the databases, but
present only for BioID here for space constraints.

Errors due to eyebrow and eyelid (eyelash) detection:
The eyebrows and eyelids are detected due to the fact that they
are predominantly dark. Hence when a weightage is applied
to darker regions, their contribution increases and hence they
are detected. The radius-based cutoff technique plays a major
role in keeping the errors due to false pupil detections on the
eyebrows to a negligible 0.067% for e ≤ 0.10.

Errors due to eye corner detection: Eye corners have a
structure somewhat symmetrical to the pupil. In low resolu-
tion blurred images, the junction between the eyelashes cre-
ates an almost circular dark structure. This is in contrast with
the brighter sclera, hence receives a higher contribution.

Miscellaneous errors: A few other errors occur from stray
factors such as wrinkles, spectacles and occlusions.

Table 3 shows the errors made by our system for e ≤ 0.10.
Figure 2 provides a view of different error types for BioID.

Error Type Error Count Error Percentage
Eyebrows 1 3.34%
Eyelashes 9 30%

Eye corners 14 46.66%
Miscellaneous 6 20%

Table 3. Error classification of our system for e ≤ 0.10, Error
percentage = (|Error Count|/

∑
|Error Count|)× 100

4. CONCLUSION

We attempted to detect and localize the eye center using
a geometric approach built upon eye-specific features. We
used a multistage radial mapping process as the core of our
methodology, involving image histogram equalization, adap-
tive skin color thresholding, iris radius based cutoff and by
specifically considering the directly inward gradients. Our
method is robust and scale-invariant: it works across differ-
ent datasets with different face image sizes and resolutions
without any additional adaptation. We outperformed the state
of the art when collectively compared across multiple bench-
mark databases. We process 50-60 frames per second on a
single thread. This makes our system usable in real-life appli-
cations, such as gaze tracking and mobile based applications.
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