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Figure 1: A user is reading the news (A) when two notifications arrive (B). They read the top one and flick left to dismiss it (C).
The user then reads the other notification and snoozes it with a flick right (D). The user takes a sip of their coffee, just as a
third notification arrives (E). Upon reading it and wanting to see more (F), the user pulls their phone closer (G) to launch the
associated app. Throughout, the user has never had to touch the screen.

ABSTRACT
As smartphone screens have grown in size, single-handed use has
become more cumbersome. Interactive targets that are easily seen
can be hard to reach, particularly notifications and upper menu bar
items. Users must either adjust their grip to reach distant targets, or
use their other hand. In this research, we show how gaze estimation
using a phone’s user-facing camera can be paired with IMU-tracked
motion gestures to enable a new, intuitive, and rapid interaction
technique on handheld phones. We describe our proof-of-concept
implementation and gesture set, built on state-of-the-art techniques
and capable of self-contained execution on a smartphone. In our
user study, we found a mean euclidean gaze error of 1.7 cm and a
seven-class motion gesture classification accuracy of 97.3%.
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1 INTRODUCTION
As smartphone screens have grown in size, single-handed use has
become more cumbersome. It is not uncommon to have interactive
targets that are impossible to reach unless the user adjusts their grip.
No doubt many millions of smartphones have been dropped while
performing such a grip change, especially if the user is walking or
performing another action. For this reason, many users have added
aftermarket rings and grips to the rear of their phones, adding
weight and bulk to devices that we wish to be as thin as possible.
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We present EyeMU interactions, a set of intuitive and rapid gestu-
ral actions that can be used on mobile phones, powered by a combi-
nation of state-of-the-art gaze estimation and IMU-tracked motion
gestures. Importantly, our interactions require no grip change or
touch input. To avoid false positive and accidental activations, as
well as eliminate unnecessary computation, our system only ac-
tivates when a series of conditions are met. First, a user must be
present in the camera’s view, then attend to the screen, then fixate
on a widget, and finally, while maintaining that fixation, perform a
motion gesture. We note our technique is highly complementary
with conventional touch input, and can serve to alleviate reach
issues, as well as expose advanced functionality typically buried in
long presses and menus.

Consider the following interaction sequence: while scrollingwith
a thumb through an online news article (Figure 1A), a user receives
a calendar and slack notification. Rather than attempting to reach
these distant interactors at the top of the screen, the user simply
stares at the calendar notification (Figure 1B) and performs a left
flick of the phone to dismiss it (Figure 1C). For the slack notification,
the user performs a right flick to snooze the alert (Figure 1D). After
sometime (Figure 1E), a music notification appears. The user stares
at this target (Figure 1F) and pulls the device closer, launching
the full screen application to get more details (Figure 1G). When
finished, the user can push the phone back to return to reading
their webpage, having never touched the screen. In this way, gaze
+ motion gestures provide a convenient and single-handed way
to trigger events, especially for out-of-reach targets. Even when
the interactor is within finger reach, users could opt to use gaze +
motion gestures as a way to access more complex functionality vs
a long press + context menu.

After reviewing related work, we describe our proof-of-concept
implementation and gesture set, built on state-of-the-art techniques
drawn from the literature. Unlike most prior smartphone gaze
tracking systems, we do not calibrate per user and our process runs
entirely self-contained on a phone with real-time performance. We
use our pipeline to power a series of example demos, and conclude
with a user study that found a mean euclidean gaze estimation error
of 1.7 cm and motion gesture recognition accuracy of 97.3%.

2 RELATEDWORK
Our work broadly intersects with research on gaze estimation on
smartphones, as well as IMU-based gesture recognition on mobile
devices. Most related are multimodal systems that combine gaze
with another input channel, which we review in greater detail.

2.1 Gaze Estimation on Smartphones
Gaze estimation is a long-standing research topic spanning many
domains, such as computer vision [2, 28, 31], graphics [57, 64] and
human-computer interaction [3, 40, 41]. Apparatus for tracking
gaze can either be worn, as is the case with a head-mounted eye
tracker [3, 54, 56], or external, such as cameras in the environment
[2, 28]. With the advent of deep learning and widespread prevalence
of high-quality cameras, image-based gaze estimation approaches
are becoming increasingly popular.

Gaze estimation using cameras span many approaches, such
as dedicated IR eye-trackers [54], depth cameras [17], and RGB

cameras [2, 28, 59]. Most heuristic [15, 37] and machine learning
[30, 46] approaches utilizing cameras can be separated into two
categories: model-based [51] and appearance-based [29, 46]. While
model-based approaches build geometric models to exploit the
inherent structure of the eyes (such as tracking the contours of
the iris), appearance based methods rely on a supervised training
approach ingesting raw images of the eyes as input.

Due to their ubiquity and high-resolution, modern smartphone
cameras have also been a recent testing ground for both model-
and appearance-based gaze estimation approaches [19, 28]. Prior
work in smartphone model-based approaches has utilized infrared
cameras, which offer images with better contrast to achieve error
rates as low as 1° [8, 31]. However, these require an instrumented
device with IR LEDs and a special wide-angle IR camera, thus
making them less practical and limited in adoption [9].

In contrast, appearance-based models have had more success,
spurred in part by the release of large datasets such as the Gaze-
Capture dataset [28], a 2.4 million image dataset for eye-tracking
on mobile devices. The authors of this dataset also created iTracker,
a CNN-based approach that achieved 1.74 cm without calibration
(1.34 cm with calibration). Attempts to surpass iTracker accuracy
have utilized training onmultiple eye-tracking datasets [25], trained
only on task-relevant data [53], or used knowledge distillation
frameworks to better generalize [19]. A recent breakthrough is the
architecture of Valliappan et al. [55], which achieves an uncali-
brated accuracy of 1.92 cm, which drops to 0.5 cm with a per-user
calibration session. This calibrated model’s error was comparable
with a commercial head-worn eye tracker, and represents the cur-
rent state-of-the-art result in smartphone eye tracking. We adapt
this architecture in our approach, adding information about the
user’s head orientation to create a generalizable model that does
not require each user to calibrate before use.

2.2 Mobile IMU-Based Gesture Recognition
IMU-based sensing on smartphones has spawned a plethora of
applications ranging from activity recognition [16, 44], inertial
odometry [12, 49], gestural input [20, 32, 58], behavioral authenti-
cation [42, 60] and accessible user interfaces [63]. As the complete
review of all these applications is outside the scope of this paper, we
focus on approaches employing motion-based gesture recognition
for interactive applications.

Motion gesture segmentation and recognition is now a well
understood problem in HCI. In their seminal work, Hinckley et al.
explored applications for on-device accelerometers such as tilt to
change orientation and tilt based scrolling [22]. Since then, a variety
of other mobile device gestures have been explored, including taps
[23, 47], squeezes [21], tilts [13], and in-air gestures [38, 50]. These
approaches share a similar workflow – there is a simple gesture
trigger detector, followed by a gesture classifier that is either based
on heuristics [39] or machine learning [26]. We follow a similar
approach and draw our gesture set from this literature.

2.3 Combining Gaze With Other Modalities
Given the natural utility of gaze to specify a target, researchers
have looked at combining it with various sensing modalities to
enable novel interactions. This includes gaze coupled with speech

578



EyeMU Interactions: Gaze + IMU Gestures on Mobile Devices ICMI ’21, October 18–22, 2021, Montréal, QC, Canada

[34], touch [43], hand gestures [10], electromyography [33], facial
gestures [5], and foot contact [27], amongmanymore. Past work has
also separately compared gaze interaction against other techniques
including motion and touchscreen gestures, but not together [14].
This has enabled a variety of applications such as modelling human
communication dynamics [36, 52], remote target selection [48, 62],
and human-robot interaction [1, 35].

While many approaches exist, most common is the combination
of gaze with touch for enhanced selection and spatial manipulation
[43, 45, 61]. Works by Chatterjee and Carter have expanded the
interactivity from touch based events to free space gestures, com-
bining gaze with hand gesture recognition [10, 11]. Another sensing
modality pair that stands out is the use of gaze to enable targeted
speech interfaces. These include systems such as Put-That-There
[7], WorldGaze [34], DoV [4], and [48].

While combinations of gaze and other modalities have been
explored, to the best of our knowledge, the interactions afforded
by combining gaze and IMU-based gestures on smartphones re-
mains unexplored. This can be attributed to low-gaze accuracy on
smartphones until very recently. Our implementation combines
gaze-tracking with motion gestures to produce an interaction that is
both reactive and discreet, recovering finer-grained device control
while retaining the usability of the device.

3 SYSTEM AND IMPLEMENTATION
Webuilt our proof-of-concept implementation on anApple iPhone 12
Pro (screen size is 12.8 × 6.4 cm), which features a front-facing cam-
era resolution of 12 MP (4000 × 3000 px). For rapid prototyping,
EyeMU is a javascript application that runs in real-time in the Sa-
fari browser on Apple iOS devices. As we prototyped EyeMU, we
validated its performance across multiple iPhone models. Since
our implementation is built in Javascript and runs entirely on the
client side, EyeMU can theoretically run on any smartphone with a
Javascript-enabled browser. However, we envision a commercial
implementation of EyeMU as a compiled OS-level feature available
through an API to any application wishing to incorporate gaze +
motion interactions.

3.1 User Presence & Screen Attention Detection
EyeMU takes a multi-step approach to enable gaze + motion inter-
actions. As a first step, it detects whether a user’s face is present in
the camera view, and then whether the user’s visual attention is on
the screen. We use MediaPipe’s Face Mesh [18] model to calculate
face orientation. The model gives a face detection score for each
frame, and further, is able to output predictions even when user’s
face is partially off-camera. Once a user is detected, we use the
output facial landmarks from Face Mesh (in 3D phone coordinates)
to extract head size, images of both eyes, and eye location within
the frame. EyeMU also uses the facial landmarks to calculate the
yaw, pitch, and roll off the head. If head yaw and pitch are within
30 and 20 degrees, respectively, we assume the user is attending to
the screen and continue to the next step of our pipeline.

Figure 2: Architecture of EyeMU’s gaze estimation CNN.

3.2 Gaze Estimation
The next step is to estimate where the user’s eyes are looking on
the screen. The core of our gaze estimation pipeline is a Convo-
lutional Neural Network (CNN) adapted from the state-of-the-art
eye tracking model presented by Valliappan et al. [55], chosen for
achieving the lowest error after calibration. The model also achieves
a low error without any per-user training, making it ideal for our
use. We modified their architecture, adding information received
from MediaPipe[18] about the user’s head orientation and size (Fig-
ure 2). We used TensorFlow to train this modified CNN model from
scratch using data from the GazeCapture dataset[28], and achieved
accuracies comparable to those reported by Valliappan et al.

Once trained, the CNN takes the left and right eye crops as input
and estimates the 2D estimate of the gaze in screen coordinate
space. The normalized coordinates of users’ eye corners and their
head angles are then added before the fully connected layers of the
CNN. To run our base model on-device, we converted the CNN into
a TensorFlow JS model, allowing us to prototype interactions in a
browser. On our iPhone 12 Pro running iOS v14.4, the base model
run alone processes video frames at 20 Hz.

Even though our model should work across users, there are
nonetheless device-specific camera intrinsics and a diversity of
screen sizes we must account for. To calibrate our model, we added
a small, in-browser model training routine. Data to perform this
fitting is captured from the front-facing camera while the phone
is in use. We first create a gaze feature vector representing each
frame. Each feature vector includes the outputs of the final three
layers of our CNN, to which we append the following facial features
extracted from the face mesh: head yaw, pitch, and roll, the area of
the face with respect to the frame, and the on-screen coordinates
of the left and right eye corners. As we describe further in our user
study section, the resulting 26-feature vector is constantly collected
during our user study in order to train a device-calibrated Support
Vector Regressor.

3.3 Gaze Target Fixation Detection
We use a straightforward heuristic for determining target fixation.
We maintain a 500 ms rolling window of gaze location estimates;
if all points reside within a 2.5 cm diameter circular region, we
consider the user to be fixated on that small region of the screen. In
cases where we have access to the UI widget hierarchy (such as in
our demo apps), we use the physical bounds of the widget itself (i.e.,
as the “hit box”). These widgets are usually larger in surface area
than the 2.5 cm diameter circle. For instance, the notifications bar
on top of the iPhone 12 Pro in iOS v14.4 is 1.9 × 6.0 cm (Figure 1).
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Figure 3: The IMU-driven motion gesture set we employed.

3.4 Motion Gesture Detection & Classification
Once EyeMU detects a gaze fixation, it waits and listens for a motion
gesture. We observe a noticeable shift in the RMS values of the IMU
when the smartphone transitions from no motion to the start of a
motion gesture, and conversely transitions from the end of a motion
gesture to no motion. We find that a simple threshold over the RMS
of IMU values (raw linear acceleration and angular velocity values)
over a window of 200 ms is sufficient to segment the start and end
of a motion gesture. We use the IMU’s output to train a motion
gesture classifier.

We extract features from the IMU values per-axis (the accelerom-
eter and gyroscope raw values sampled at 60 Hz) and feed it as
training data to a Support Vector Classifier. We treat each IMU axis
history over one trial as an independent time series and compute
the following features: the minimum, mean, maximum, range, and
standard deviation of the time series and the first two coefficients
of a quadratic fit to the time series. Features are calculated for each
axis are then concatenated into a common feature vector and flat-
tened, resulting in a feature vector of 72 elements for each gesture
trial. The set of seven motion gestures we use is shown in Figure 3
(plus a neutral pose).

3.5 Midas Touch & False Positive Mitigation
Gaze interactions can suffer from the Midas Touch problem if not
carefully designed [24]. To mitigate this significant issue, our ap-
proach relies on a series of cascading condition checks (Figure 4)
such that our classifiers only run when needed. This not only re-
duces false positives, but also power consumption. Our first check
is to determine if there is even a user present in the view of the
user-facing camera. If no face is detected, our entire pipeline sleeps.
If there is a face present, we next determine if the user is attending
to on-screen content or looking elsewhere. For this, we run our
gaze estimation pipeline. If the user is determined to be looking at
the screen, we enter the “user attending to screen” state. We now
maintain a rolling history of live gaze estimations (in our study,
we found an ideal window is around 500ms), on which our gaze
fixation detector runs. If target fixation is detected, we move into
the “user fixated on target” state. Only now does our motion gesture
classifier begin to run using live IMU data. If the user disengages
from the target, screen or device, the pipeline immediately falls
back to an earlier state and motion gesture detection is turned off.
However, if the user performs a motion gesture while also fixated
on a target, the corresponding event handler will be triggered.

We found this highly-gated and double-trigger approach to be
an effective means of reducing false positive triggers, which as
noted in much prior work generally carries a higher user cost than
missing true positive events [6]. The simple fact is that users are

Figure 4: To mitigate the Midas Touch problem, we use a
highly gated approach, illustrated above, to determinewhen
to trigger UI events.

constantly gazing at their screens and constantly moving as well
(especially while e.g., walking), and so the mere presence of screen
gaze and hand motion is insufficient for robust operation. Moreover,
face and gaze tracking is not 100% accurate. While reading news
stories or scrolling through photos on a smartphone, it should be
expected there will be periodic false positive fixation events, even
when using a long window of gaze history. However, in order for
there to be a falsely triggered UI event, the user would have to also
perform a motion-gesture-like movement while such an error was
occurring. The likelihood of co-occurring errors is relatively low.

Put simply, if we can keep the false positive trigger rate of our
gaze-fixation detection and motion-gesture detection down to say
5% each (i.e., 95% true positive accuracy, similar to our study results),
we can expect a system false-positive trigger rate of just 0.25%, as
both pipelines have to fail in order to incorrectly trigger an event.
Of course, the downside of this double-trigger arrangement is that
our true positive accuracy suffers - two 95%-accurate detectors will
compound their errors, resulting in 90.25% accuracy. However, as
noted previously, there is an asymmetric user cost in errors – false
triggers are generally perceived as more costly than true misses –
and so we believe this arrangement to be worthwhile in practice.

3.6 Latency & Frame Rate
Our end-to-end pipeline runs at a framerate of 19.1 Hz and has a
mean latency of 43.03 ms (SD = 3.1 ms) from captured photo to
output gaze prediction. The bulk of the processing time is spent
on computing the face mesh and the gaze estimation neural net-
work sequentially, which run independently at 25 Hz and 20 Hz
respectively. Our gesture classification module is comparatively
faster, running at above the 60Hz data output rate of the smart-
phone IMU. Even though our gaze estimation model is optimized
for smartphones, it does incur a cost on the battery. We find that
our full stack can run continuously for around three hours on the
iPhone 12 Pro (battery capacity of 10.8 Wh). In practice, our false
positive mitigation process (described above) would further boosts
battery life since the gaze model need not always be running.

3.7 Open Source Code
To help other researchers explore this domain, the source code for
our live pipeline is freely available on Github here.
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Figure 5: Email Client: A user is browsing their inbox (A). Spotting an interesting email, the phone is pulled closer to take a
peek(B), and then pushed back to close it (C). An email thread’s details are unrolled with a right flick (D), and after reading
(E), rolled back up with a flick left (F). Finally, an unimportant email is deleted with a page left gesture (H).

Figure 6: Photo Gallery: while browsing their library, a user decides to look more closely at some flowers (A & B). The user
then flicks left to cycle through different filters (C & D). The user then returns to their library by pushing the phone away (E).

4 EXAMPLE APPLICATIONS
To illustrate real-world uses of EyeMU interactions, we built a series
of demos. In our introduction, we described one example sequence
involving notifications (Figure 1). In this section, we describe three

more use cases. In all of these demos, interactions were powered
by our live pipeline. Please also see our Video Figure.

New emails most often arrive at the top of the screen, which is
the most difficult region to reach in single-handed use. Moreover, a
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Figure 7: Home Screen: In this demo, a user looks at the calendar icon on their home screen (A) and pulls the phone closer
(B) to open it (C). The calendar is minimized with a push action (D). The user then fixates on the weather icon and pulls the
phone closer (E) to open the app (F).

user browsing their inbox can often only open or close an email,
with no option to glance at the contents of an email thread. Many of
the archive and dismiss options can only be triggered with a swipe
that extends across the screen. In our EyeMU-augmented mailbox
demo app (Figure 5), emails can be quickly peeked at when pulled
closer, or dismissed just as quickly. A thread can also be opened
and closed using a flick to the right or left, respectively. Finally,
emails can be dismissed and archived using a page left gesture.

In our EyeMU-augmented photo gallery app (Figure 6), a user can
fixate on a thumbnail to select it. The photo can then be maximized
by pulling their phone closer, or minimized with a push gesture.
Filters can be applied to the full-screened photo or fixated thumbnail
with left or right flicks.

Finally, peeking into an application from the home screen usually
requires a long or forceful press, negating the speedup that moti-
vates peeking. With our EyeMU-augmented home screen (Figure
7), users can peek into applications by pulling their device closer
while fixated on the app icon.

5 USER STUDY
We designed our user study to test the three variables that would
affect the accuracy of EyeMU interactions, namely: our gaze esti-
mation pipeline, gesture trigger detector and gesture classifier.

We recruited 10 participants (4 male, 6 female, mean age of 21.3)
from a local university population. The study lasted approximately
one hour and paid $20 in compensation. At the start of the study,
the experimenter walked the participants over the study procedure
and asked them to perform the various motion gestures once to

get them acquainted with the gesture set. The participants were
asked to hold the phone in whichever hand felt natural (nine were
right-handed) in the portrait orientation, and sit in a comfortable
position.

Each session started with the system randomly loading a list or
grid view with the corresponding gaze target marked with a red
dot. The candidate placement positions for each view can be seen
in Figure 8A. These layouts were motivated by our applications
(Section 4), which consisted of either a grid view (e.g., photo gallery
and home screen) or list view (e.g., email clients and notifications).
The grid view exhibited eight potential targets, while the list had six.

Figure 8: Left: Locations of the target dots for the grid and
list rounds of the user study. Right: Every trial of the evalu-
ation featured a gaze fixation phase (A) and motion gesture
phase (B). After performing the motion gesture, the partici-
pant ended the trial by tapping the screen.
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Figure 9: Gaze estimation accuracy of EyeMU. The gaze error is inversely proportional to the window length.

The participants were asked to gaze at a single red dot (Figure 8A).
After 1.2 seconds (enough time for the user to fixate), the screen
advanced to capture a motion gesture (Figure 8B). Specifically, the
user was asked to perform one of the seven gestures at random (Fig-
ure 3) using small text overlaid on the dot. After the user performed
the gesture, they were asked to tap the screen to end the trial. The
experimenter observed users throughout the study and any trials
in which a user performed an erroneous gesture was repeated.

Throughout the study, our system logged a timestamped fea-
ture vector consisting of raw IMU output, base model embeddings,
ground truth gaze (X/Y) location, and the target gesture class. Each
participant performed three sets of both grid and list layouts in a
randomized order, back to back. Each participant performed every
combination of gesture and screen target for each set, logging 294
trials over the course of the study, yielding 2940 EyeMU interactions
in total.

6 RESULTS
We evaluated the performance of our gaze estimation model on the
user study data we captured. Specifically, we performed a leave-
one-user out cross validation. In this process, we train a Support
Vector Regressor on the 26 gaze features (Sec 3.2) from nine of
our participants and test on the tenth (all combinations, results
averaged). Given each gaze trial lasts for 1.2 seconds, we removed
the first 200 ms to account for the user’s reaction time to fixate on
the dot. The remaining 1.0 seconds of data was chunked into 100
ms pieces and concatenated together to create windows of varying
duration from 100 to 1000 ms. Shorter windows (i.e., less data)
mean less latency, but also generally less accuracy — an trade-off
we wished to quantify. Figure 9 shows the accuracy of our gaze
model across these different window sizes.

In summary, for our shortest window length of 100 ms, our
model has a mean euclidean error of 2.58 cm (SD = 1.6). The mean
absolute error along the X direction is 0.58 cm (SD = 0.4) and that
along the Y direction is 2.43 cm (SD = 1.7). The error decreases
proportional to window size, dropping to 1.78 cm (SD = 1.2) when
using 1000 ms of data. For comparison, if we use the Google CNN

model out-of-the-box and do not train it for our target device, it
has a mean euclidean error of 2.65 cm (SD = 1.6 cm).

The higher error along the Y-direction relative to the X can be
attributed to two reasons. The first is that the users hold the phone
in portrait orientation, where the screen size along Y (12.8 cm)
is twice that of X (6.4 cm), leading to a higher margin for error.
Second, the range of pitch for both the head and eye pose is much
smaller than their yaw, thus making the changes harder to discern.
At a high level, we believe our gaze pipeline is very much usable to
identify user fixations and enable gaze + motion based gestures.

To evaluate the accuracy of our model across different motion
gestures, we first segmented them using a threshold based heuris-
tic (see Section 3.4) across all of our participants. We found this
accuracy to be 100%. Similar to our gaze evaluation, we employ
a leave-one-user out cross-validation, training on the data from
nine users and testing on the tenth (all combinations, results av-
eraged). We found our mean gesture classification accuracy to be
97.2% (SD=0.04%); the confusion matrix can be seen in Figure 10. We
found that almost all gestures worked equally well and there was

Figure 10: Normalized gesture confusion matrix.
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no significant difference in performance based on the handedness
of the participants.

7 LIMITATIONS & FUTUREWORK
While the results of EyeMU are promising, there are several key
limitations that will need to be overcome before it is ready for
consumer use. The first is the accuracy of our gaze module. Even
with a state-of-the art mean error of 1.74 cm, it still falls short of the
sub-centimeter accuracy offered by dedicated eye trackers for fine
grained selection and control. In the future, advances in computer
vision and higher-resolution smartphone cameras will only serve
to make EyeMU interactions more robust and practical. We also
note the current implementation of EyeMU is tested on one device.
While its web-app form factor does allow it to run on any device
with an IMU and front-facing camera, more testing is required.
Additionally, the potential applications of EyeMU on larger devices
such as tablets remains to be explored. We believe that on such
devices the gaze estimation task may be easier due to increased
screen real estate, leading to more substantial eye movements.

Our current prototype’s impact on a phone’s battery life is signif-
icant. EyeMU’s execution loop requires the evaluation of three se-
quential neural networks (for face detection, coarse gaze prediction,
and fine-tuned gaze output). Even so, EyeMU is capable of running
for three hours continuously on an iPhone 12 Pro. Our proof-of-
concept implementation was written in JavaScript, a language not
known for its efficiency. With tighter hardware integration (e.g.,
running the camera at 10 FPS instead of 30) and better hardware
acceleration, no doubt significant strides could be made. A com-
mercial implementation could be dramatically more efficient, in the
same way “Hey Siri” / “Hey Google” always-on audio detection has
been highly optimized. Likewise, intensive computer vision SDKs
(e.g., Apple’s ARKit) have been made practical through extensive
use of special processing hardware, which our approach could also
leverage.

Finally, in the future we hope to explore sensor fusion based
approaches to bolster the accuracy of EyeMU. For example, using
both the RGB and front facing depth camera feeds for gaze predic-
tion. Furthermore, it can also be coupled with adaptive dwell-based
interfaces to add a temporal aspect to our gaze + motion gesture
interaction paradigms.

8 CONCLUSION
Adding to the literature on multimodal gaze, we have presented
our work on EyeMU, a new gaze- and IMU-driven interaction tech-
nique and implementation. Our pipeline is built on state-of-the-art
techniques, such that we achieve parity to the best prior work in
terms of gaze accuracy. In our user study, we found a mean eu-
clidean gaze error of 1.7 cm, sufficiently accurate to allow users to
fixate on larger widgets, such as notifications. In the same study, our
IMU-driven motion gesture classifier was 97.3% accurate. Our entire
software pipeline runs in real time on an iPhone 12 Pro. With future
optimizations, we envision our technique running as a background
process, allowing for new avenues of gaze-driven interactions that
work synergistically with traditional motion input.
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