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Fig. 1. LemurDx provides an objective estimate of hyperactivity risk. This visualization mock-up shows an initial prototype
informed by need-finding interviews with clinicians and enabled by a hyperactivity risk score from a machine learning model
using motion data. The physicians can use such an interface to assess a child’s behavior by evaluating changes and trends of
hyperactivity risk score across different contexts, such as activity and location.
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Hyperactivity is the most dominant presentation of Attention-Deficit/Hyperactivity Disorder in young children. Currently,
measuring hyperactivity involves parents’ or teachers’ reports. These reports are vulnerable to subjectivity and can lead
to misdiagnosis. LemurDx provides an objective measure of hyperactivity using passive mobile sensing. We collected data
from 61 children (25 with hyperactivity) who wore a smartwatch for up to 7 days without changing their daily routine. The
participants’ parents maintained a log of the child’s activities at a half-hour granularity (e.g., sitting, exercising) as contextual
information. Our ML models achieved 85.2% accuracy in detecting hyperactivity in children (using parent-provided activity
labels). We also built models that estimated children’s context from the sensor data and did not rely on activity labels to
reduce parent burden. These models achieved 82.0% accuracy in detecting hyperactivity. In addition, we interviewed five
clinicians who suggested a need for a tractable risk score that enables analysis of a child’s behavior across contexts. Our
results show the feasibility of supporting the diagnosis of hyperactivity by providing clinicians with an interpretable and
objective score of hyperactivity using off-the-shelf watches and adding no constraints to children or their guardians.

CCS Concepts: • Computing methodologies → Machine learning; • Human-centered computing → Ubiquitous and
mobile computing systems and tools; • Applied computing→ Life and medical sciences.

Additional Key Words and Phrases: health sensing, diagnosis support tool, ADHD, hyperactivity, activity recognition
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1 INTRODUCTION
Globally, Attention-Deficit Hyperactivity Disorder (ADHD) affects approximately 5% children and adolescents [17,
43, 47]. ADHD is a neurodevelopmental syndrome that often leads to increased inattentiveness, impulsivity, and
hyperactivity. Children with ADHD start showing these signs as early as four years of age. In school-age children,
55% of all ADHD cases show hyperactivity symptoms [53]. The current standard of measurement of hyperactivity
in children depends on subjective reports via questionnaires from parents or teachers. These questionnaires
are convenient as they save time, money, and effort. However, research has also shown very low inter-rater
reliability for these surveys between parents and teachers (𝜅 = 0.11) [54]. The inherent subjectivity of these tests
and physicians’ lack of contextual awareness often lead to misdiagnoses. This is problematic as overdiagnosis
leads to unnecessary treatment, and underdiagnosis can lead to delayed treatment [5, 24]. Thus, there is a need to
add some objectivity to the diagnosis and measurement of hyperactivity.
Researchers have used commodity sensors to measure the amount of body motion and correlate it with

hyperactivity. For example, Lin et al. [33] tracked children’s arm movement using smartwatches, comparing
children with and without hyperactivity during seated class activities. They found a significant difference in
the measured acceleration signals between the two conditions. Several other works have developed similar
machine-learning (ML) models to detect hyperactivity in children from passively sensed data [13, 23, 36, 38, 40].
However, these works assumed the measurements happened while children were in specific activities, such as
a 1-hour session at a clinic [40] or taking a test [23]. Finding such settings for children is often not practical,
especially given that the condition is chronic and requires frequent measurement and management. Moreover, a
clinical examination does not cover a full spectrum of a child’s behavior and condition during a typical day or
how their behavior changes on different days (e.g., weekends vs. school days).
To this end, this paper presents LemurDx, a passive sensing approach to identify hyperactivity symptoms in

children without putting any behavioral constraints on children. We collected sensor data on an Apple Watch
from 61 children (25 with ADHD - hyperactive presentation and rest in the control condition) for up to 7 days.
Given that children, irrespective of any underlying behavioral condition, can exhibit a wide range of physical
activity in a day, it is important to contextualize the collected motion data. However, providing fine-grained
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information about a child’s day would be impossible for adolescents and very burdensome for their parents. Thus,
we asked parents to provide coarse, half-hourly activity labels, such as sitting or exercising, the best they could
recall at the end of the day. These labels are almost certain to be noisy, but our analysis showed that they still
contained helpful information. Our ML pipeline to estimate the risk of hyperactivity achieves a detection accuracy
of 85.2% (F1-score = 81.6%) when using sensor data from moments labeled as “quiet” or “sitting”. Without such
contextualization, the model accuracy drops to 67.2% (F1-score = 63.0%).

We also interviewed five clinicians to better understand their needs while they make diagnoses. The clinicians
stressed the need to contextualize hyperactivity. However, requiring parents to annotate a child’s daily life is
not practical. Thus, LemurDx provides an automatic context detector that relies on motion and time of the day
information to contextualize sensor measurements. Replacing the parent-provided labels with sensed contexts
provides comparable performance (accuracy = 82.0%, F1-score = 78.4%) in detecting hyperactivity.

Despite success in lab-based studies, ML systems often fail to be appreciated in clinical practice [57]. Clinicians
rarely use black-box systems, and therefore it remains hard to improve healthcare outcomes with such systems [14,
18]. In response, prior research [2, 3] in human-AI interaction has emphasized the importance of the interpretability
of ML models for successful collaborations. In our study, too, the clinicians requested a tool that helps them
make an informed decision and not force them to rely on a single number or output. Thus, we provide a level of
interpretability by estimating a risk score for momentary hyperactivity at a 30-minute resolution for a whole day.
The ML model uses this output to make a final inference. However, a physician can visualize the same data and
filter it by appropriate contexts (such as location, time of the day, in-person school day, etc.) and correlate it with
information shared by parents and teachers. We designed an initial interface (Figure 1) that enables clinicians to
explore and compare the risk score by different contexts and children, which will help them interpret the model
and make final decisions. In the future, we plan to evaluate the effectiveness of such diagnosis-support tools
through more clinician interviews and clinical deployments.

In sum, we made the following contributions in this work:

(1) We conducted semi-structured interviewswith five clinicians and identified their needs to see a hyperactivity
risk score calculated from motion data that can be compared by different contexts (e.g., time, location,
activity).

(2) We extended the data collection of the pilot study of 30 children [34] to 61 children (25 hyperactive, 36
control) and collected sensor data using a smartwatch in a completely unconstrained setting.

(3) We developed a machine-learning (ML) pipeline to detect hyperactive children and demonstrated that
context filtering based on parent-provided activity labels is effective, achieving 85.2% (F1 score = 81.6%)
accuracy.

(4) We then fully automated the pipeline by inferring the child’s context automatically from motion data and
achieved 82.0% (F1 score = 78.4%) accuracy in detecting hyperactivity symptoms.

(5) We analyzed the result of the model based on the risk score as an objective measure of hyperactivity, which
enhances the interpretability of the ML system.

2 BACKGROUND
ADHD is a common mental health disorder. In many children, it causes trouble in paying attention and controlling
impulsive behaviors and is a major cause of academic underachievement. The problem becomes more significant
when the symptoms last into adulthood, particularly when it is not diagnosed at an early stage. Adults with ADHD
encounter many difficulties at work, at home, or with relationships. Therefore, the importance of diagnosing
ADHD at an early stage has been emphasized for successful treatment.
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There are three presentations of ADHD: (1) inattentive presentation, (2) hyperactive/impulsive presentation,
and (3) combined presentation. In school-age children, approximately 55% of all ADHD cases consist of the
presentation (2) or (3) [53]. While there are objective assessment tools such as the Conners Continuous Perfor-
mance Test [28] for measuring inattentiveness, there are no comparable objective tools to assess hyperactivity in
clinical practice [34]. The current standard to assess hyperactivity is based on reports via questionnaires, such
as the Vanderbilt Assessment Scales [22]. For most children, parents and teachers are supposed to provide data
using such questionnaires as it is desirable to assess children in at least two settings [17]. While fundamental
for diagnosis, this test has several challenges, especially for teachers [19]. In addition, many primary care set-
tings where children receive treatment for ADHD lack the care coordination infrastructure necessary to obtain
such reports [49]. Furthermore, the questionnaire-based approach is subjective, which causes over-diagnosis
or under-diagnosis [20, 25]. Thus, we aim to provide physicians with a direct window into a child’s daily life
using passive sensing. The subjective information from the parents and teachers can serve as an additional layer
of information. Taken together, the surveys and passively-sensed hyperactivity measures can be shown to the
physician in a single interface to aid in decision making. Given ADHD is a chronic condition, the measurement
technique can also be used for long-term drug titration and condition management. Thus, the solution needs to
be immediately deployable and usable for the children and their parents, teachers, and physicians.

3 RELATED WORK

3.1 Hyperactivity Detection
Researchers have looked at automating children’s hyperactivity detection [35, 52] using MRI, EEG, motion
sensors, and activities on social networks. In particular, given that hyperactivity is a presentation of frequent
body movement, approaches using motion sensors have been explored most frequently [7]. However, none
have looked at ways to contextualize the findings to help physicians make a decision. Until now, the focus
has remained on making a binary decision for the presence of hyperactivity. Moreover, several efforts have
focused on identifying hyperactivity symptoms in specific contexts. For example, Lin et al. [33] tracked children’s
arm movement using smartwatches during seated class activities. They reported a significant difference in the
zero-crossing rate of the gyroscope and accelerometer between children with and without hyperactivity. Similarly,
Earnest et al. [16] compared an actigraph of children while watching a movie, reporting that higher movement
levels were associated with higher parent-rated hyperactivity symptoms. Sleeping is also a popular time to
compare the motion data for measuring hyperactivity, as children with ADHD often find it hard to fall asleep.
Cortese et al. [12] measured children’s sleep using actigraphy and found that the children with ADHD had a
significantly longer time to fall asleep than the controls. However, research has shown that correlating sleep
disturbances with hyperactivity often leads to misdiagnosis [11, 42]. Thus, it is crucial to measure hyperactivity
across contexts, assess how different contexts affect a child’s behavior, and let the physician make the final
diagnosis. The key takeaway from the prior work is that a child with ADHD often moves more than a child with
no ADHD when expected to be quiet or relaxed.
However, contextualization of hyperactivity measurement in a child’s daily life is still missing. For example,

O’Mahony et al. [40] conducted a study where children wore two IMU bands on their waist and leg while they
spent an hour at a psychiatric consultancy. They developed an SVM model to do the binary classification of 43
children, achieving 95.1% accuracy. Similarly, Gilbert et al. [23] measured motion data by two IMUs attached
to children’s wrists and ankles while they took a medical test. They developed a model based on discriminant
function analysis and achieved 86.0% accuracy in hyperactivity detection. Weda is a scale-driven wearable
diagnostic assessment system that has ten different tasks during which it measures children’s motion data [30].
While showing promise, these works assume the measurements of children’s motion data via IMU sensors happen
during specific activities in controlled settings (e.g., at a clinic). Here as well, the experiments do not involve
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hyperactivity measurement during a child’s typical day, which is critical since conducting multiple inspections is
recommended in clinical practice [17].
Some researchers have conducted experiments in unconstrained real-world settings [1, 13, 36, 38]. These

models use datasets that include motion measurements for 24 hours. The models include different parts of the
sleep stage as features, and it is unclear what parts of the day ultimately contribute to the model most effectively.
Thus, these models may lead to confusion between hyperactivity and sleep disturbance. One way to remove this
confusion would be to let the physicians make the diagnosis with passive sensing and machine learning, providing
physicians with contextual information and estimated hyperactivity across contexts. Research has also shown
that children do not prefer to wear smartwatches while they sleep [9]. Moreover, the data split and validation
strategies in these works are questionable. Some efforts have optimized the final decision threshold using all
participants’ data [13, 36, 38], and others have randomly split windowed data into different cross-validation
folds [1]. As highlighted by Hammerla et al. [27], such approaches often lead to non-generalizable results.

Therefore, we aim to develop a system for hyperactivity detection from smartwatches’ data worn by children
freely in their daily lives. In this way, we can leverage existing devices for healthcare purposes without additional
user burden, which will enable physicians to inspect children’s behavior in the longer term. Naturally, such
unconstrained settings will pose challenges for analyzing motion data since the data lacks context.

3.2 Contextualizing Sensor Data in Passive Sensing
Contextualizing data is a known strategy in different domains of passive sensing. For example, Obuchi et al. [39]
used a simple time-based contextualization in predicting brain functional connectivity using mobile devices.
They divided daily sensor data into three bins corresponding to day, evening, and night, using them as features.
Wang et al. [51] proposed an approach to predicting depression using passive sensing data from students’
smartphones and wearable devices. They leveraged GPS data to contextualize the usage of phones (e.g., on campus
or off campus). Xu et al. [56] further developed this idea to use multi-sensor data for contextualization, proposing
contextually-filtered features for depression detection.

The importance of contextual information for hyperactivity detection is corroborated by clinical descriptions of
hyperactivity symptoms, which include “often leaves seat in classroom or in other situations in which remaining
seated is expected,” and, “often runs about or climbs excessively in situations in which it is inappropriate.” Thus,
we aim to enable unburdened contextualization of a child’s physical behavior to improve the accuracy of the
model and to help physicians interpret the model based on clinical and contextual insights. In this work, we start
by collecting contextual information from family members by logging half-hourly activity labels such as quiet or
exercising. We then demonstrate the effectiveness of utilizing the labels in hyperactivity detection, and also show
that it is feasible to train an ML model that estimates such contextual information from sensed data.

3.3 Previous Version of LemurDx
Lindhiem et al. [34] published a pilot study with a subset of the data analyzed in this paper (30 vs. 61 children) with
a similar performance using parent-provided labels. The current paper makes the following novel contributions:

(1) A machine learning approach that generalizes across the two data collection phases. The dataset covers a
diverse set of situations. For example, the number of participant days varies from 2 to 7 days, a portion of
the second phase of data collection happened during the COVID-19 pandemic, and the data has no school
days, virtual and in-person school days.

(2) Need-finding interviews with five clinicians.
(3) Objective measurement of hyperactivity (instead of a binary decision) that a physician can visualize or

assess contextually.
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Fig. 2. Mock-up used in the interview to inform clinicians of potential interfaces based on existing research approaches.
Existing works output likelihood of hyperactivity based on a motion sensor. For example, the patient shown in this mock-up
is classified as having hyperactivity with a probability of 83.3% by a model with a detection accuracy of 88.0%.

(4) An approach to remove the need of annotated activity labels for reliably measuring hyperactivity without
added burden on parents and teachers.

4 PRELIMINARY INTERVIEWS WITH CLINICIANS
Given our aim to build a system that finds adoption in clinical practice, we conducted semi-structured interviews
with five clinicians.

4.1 Process
We recruited pediatricians and psychologists who regularly diagnose children’s ADHD symptoms. In the end,
five clinicians (P1-P3: three pediatricians and P4-5: two psychologists) joined our phone-based interviews. We
asked the participants a series of questions: “What problems, barriers, or obstacles do you have with the diagnostic
process?”; “What are your thoughts on using smartwatches to quantify children’s movement?”. Then, we briefly
explained existing research in measuring hyperactivity, as well as a mock-up that would inform them of potential
interface ideas (shown in Figure 2). After that, we asked several questions, such as “How do you interpret the
output of the systems from existing research?”: “What do you think would improve the usefulness of such systems?”;
“What features would you like to see on a clinical dashboard listing patients and the output we discussed?” Each
interview took approximately 30 minutes.

4.2 Findings
All participants mentioned that the current diagnostic process is biased in response to the first question, “What
problems, barriers, or obstacles do you have with the diagnostic process?”

“Yes, it leads to a lot of false positives, it is pretty biased.” [P5]
“It’s hard to get the paper back from the teachers and it can be very biased. It’s very rudimentary
and needs to be updated.” [P1]

These comments aligned with our motivation to develop an objective measure of hyperactivity. The latter
comment also highlighted the burden of completing questionnaires and validated our approach to measuring
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hyperactivity using passive sensing. When asked about their thoughts about “using smartwatches to quantify
children’s movement?”, four of the five clinicians responded positively.

“I didn’t know such research has been done. It will help with objective diagnosis. I wonder how the
systems work and how reliable the output is. It’s unlikely just to use the output, but it will probably
help us.” [P2]

“It’s interesting. I am not sure how you would quantify hyperactivity. By nature, kids can be hy-
peractive at times, so you would need to distinguish between a normal kid and one that really has
ADHD.” [P4]

While positive, these participants asked about how motion levels sensed by the watch relate to hyperactivity.
The responses suggest a need for interpretability and not using the model as a “black box”. This point was further
elaborated in the answers to the following questions, “What do you think would improve the usefulness of such
systems?” and “What features would you like to see on a clinical dashboard listing patients and the output we
discussed?”;

“Hyperactivity level would be dependent on the context. All children can be active in playing
sports regardless of the condition. Exploring data across contexts is necessary for us to rely on the
system.” [P3]

“It would be nice to have a scale so that we can compare it across different children and different
context. There has to be some way to be able to look at the number and understand more of what it
means in terms of the standard patient.” [P1]

“I would like to see the frequency of hyperactive movements, when throughout the day they are
occurring (multiple times a day, only after school, etc.) A timeline or a graph would be perfect for
this.” [P4]

The comments of P3 and P1 highlight the importance of context while measuring hyperactivity. P3 and P4 also
suggested that allowing clinicians to explore the data via a dedicated interface (e.g., a timeline with contextual
information) would be helpful.
In summary, the clinician responses elucidated the following requirements for a system that aids in ADHD

diagnosis:

(1) The algorithm should output a hyperactivity pattern over time.
(2) The clinicians should be able to compare the score by applying several filters such as the time of a day or

activity context.

Recently, Sivaraman et al. [46] assessed clinicians’ interactions with an AI system that predicts the effects of
treatment strategies. They found that using tools as a source of additional evidence is critical, such as helping
inform comparisons that cliniciansmay already bemaking. Our findings corroborate their conclusion by indicating
that visualizing the risk score across different contexts can help clinicians compare patients’ behavior.
Additionally, P4 and P5 were concerned about the practicality of requiring children to wear a watch for long

durations. Thus, we did not expect children to wear the watch at specific times and kept the requirements relaxed
overall. We describe our data collection protocol in the next section.

5 DATA COLLECTION
We collected the study data using a custom smartwatch app that recorded data over several days. We also asked
participants’ family members to log coarse activity labels for the child’s day. The study was approved by the
Institutional Review Boards at Carnegie Mellon University and the University of Pittsburgh.
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5.1 Smartwatch Application
A wide array of specialized wearables have been explored for sensing hyperactivity, such as actigraphy and
wearable IMUs. Since smartwatches are now ubiquitous and sensor-laden, we built a custom data collection app
to enable immediate uptake of technology. We used the Apple Watch (Series 5) as it provides, apart from motion
sensors, an array of other sensors that can be used for context or health sensing, such as heart rate, location,
and nearby Bluetooth devices. We built a custom application that recorded accelerometer data at 50 Hz, heart
rate, GPS-based location (updated if the change of more than 100 ft is observed), and nearby Bluetooth devices to
a local file. The watch’s operating system directly controlled the sampling rate for all sensors apart from the
accelerometer. We sampled accelerometer data using Apple Watch’s CMSensorRecorder1 class. We specifically
mention this class here because we experimented with several hardware platforms and APIs, but every tested
alternative optimized for the battery life on the watch and did not reliably record sensor data for 12 hours each
day. While specific-purpose devices such as Actigraphs regularly record raw motion, recording such data for
extended periods is rare on commodity watches. While the used approach reduces the sampling rate to 50 Hz
(which makes it harder to differentiate between jerks, falls, etc.), it optimizes for deployability and battery life.
Finally, we have yet to utilize the GPS, heart rate, and Bluetooth data in our machine-learning modeling. The
collected data can still be shown to clinicians and practitioners to contextualize motion and behavior.

5.2 Activity Context
At the end of each day, we asked a member of the family to log their activity in a spreadsheet-based log file at
half an hour intervals. The activity labels consist of seven activities: sleeping, sitting/quiet, everyday/household,
exercise, at school, not wearing, or other. For cases where more than one activity occurred in an interval, they
were asked to log the most dominant one in terms of time. We gave the family members the option to reduce
their annotation burden and provide the activity labels at the end of the day. This approach, no doubt, increases
label noise but we optimized user burden and compliance. The logged data provided contextual information to
help build the ML models and clinicians make a decision, as found in Section 4.2.

5.3 Participants
We targeted children between the ages of 5 to 12 years as children younger than 5 years would not be comfortable
with a watch throughout the day and children older than 12 years often start to transition to adult services [44]. The
research staff screened the interested participants and reviewed their eligibility. Children with other alternative
mental disorders, such as major depression, autism spectrum, and psychosis, were excluded from both the control
and ADHD groups. In total, we recruited 75 participants through a web-based portal advertised at a city-wide
hospital. Once selected, the participants and their families were asked to wear the smartwatch and log activities.

Out of the 75 participants, 68 completed the data collection properly; using the watch for the assigned period
and reporting activity. Out of this, 32 children had ADHD, and 36 were in the control group. The inclusion
criterion for the ADHD group included K-SADS-PL [31], which is a diagnostic interview. We also used the
Vanderbilt Assessment Scale-Parent report (VADPRS) [22] to provide a score ranging from 0 to 14, where a higher
score indicates stronger hyperactivity.

5.4 Procedure
Our data collection consisted of two phases: one pilot round (Phase 1) followed by a longer data collection
round (Phase 2). Phase 1 consisted of data collection across two days with 15 control and 13 ADHD participants,
conducted fromMarch 2019 to July 2019. The ADHD group was medicated for one of the two days of participation.
Phase 2 data collection was longer and based on the success of the pilot results from phase 1 data [34], conducted

1https://developer.apple.com/documentation/coremotion/cmsensorrecorder?language=objc
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Fig. 3. Distribution of parent-provided activity labels across different types of days. Error bars indicate standard deviation.

from February 2021 to January 2022. Phase 2 collected data across seven days with 40 participants (21 control,
19 ADHD). During Phase 2, children often had virtual school due to the Covid-19 pandemic. Thus, the overall
variability in children’s behavior between and within the two data collection phases is quite high.

The data collection procedure was similar across the two phases. During each day, the families were asked
to have their children wear the watch and run the data collection application. There was no control over the
timing or duration of collection. Apart from annotating activity labels, a family member also noted the type of
day in terms of school day type. Specifically, participants in Phase 1 selected either in-person school or no school.
Participants in Phase 2, on the other hand, selected one of the three categories: in-person school, virtual school,
or no school.

5.5 Data Cleaning
Out of the 68 participants that completed our study, four needed to be discarded due to an Apple Watch error
while recording their data. Another participant was marked as outlier data due to inadequate contextual data
annotated for them. Further, data from two more participants with ADHD were not included in the analyses
as they were on medications for the whole data collection period. As a result, we had usable data from 61 total
participants (25 ADHD and 36 control). In addition, there are a few days where the data was only logged for a
short moment (i.e., less than 1 hour) due to system or user error. As a result, the number of participants remained
the same, but 17 out of 244 participant-days were removed.

5.6 Data Exploration
We analyzed the descriptive statistics of the collected dataset. Of the participants in Phase 1, 50% of the collection
period was marked as no school, and the rest was marked as in-person school. Of the participants in Phase 2, 45%
was no school, 40% in-person school, and the rest was virtual school. On average, each child wore the watch for
11.0 (SD = 1.7) hours per day. The label distribution across different types of days can be seen in Figure 3. At first
glance, it seems that the children’s behavior varies across the kind of days. While it is entirely possible that the
behaviors are indeed different, it is also likely that the parent has no idea how much the child moved at school.
There are blind spots for teachers and parents and that is why the inter-rater reliability between teachers and
parents is often low for ADHD questionnaires [54]. Thus, LemurDx aims to allow clinicians and practitioners to
have an objective window into the lives of children.

We also show the probability of each child wearing a watch for a different time in a day in Figure 4. On average,
children wore the watch from the morning until the evening and did not wear it while sleeping at night. The
variability is relatively high during day time, indicating that models that use specific time data as inputs (e.g., [36])
might not work properly in an unconstrained scenario over multiple days.
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Fig. 4. Probability of wearing a watch throughout the day. The range indicates the standard deviation.

Fig. 5. Example 5-minute raw signals (acceleration in x-axis) of two children in the control and hyperactive condition in
different activity contexts. (top) A child with hyperactivity. (bottom) A child without hyperactivity.

When we visualized the collected motion data and compared movement patterns between children with
and without hyperactivity, we noticed that there were moments when the children in the two groups behaved
similarly. Figure 5 shows randomly-extracted example acceleration plots of two children (one hyperactive and
one control) by activity over five minutes. There is not much difference between the two groups during sleeping,
everyday/household, exercise, and at school. However, the child with hyperactivity shows larger movement
than the child from the control group during sitting/quiet moments. This observation highlights the importance
of making ML models aware of activity context, which corroborates the system requirements described in
Section 4.2.

6 PROPOSED MACHINE LEARNING PIPELINE
We describe our ML pipeline for estimating hyperactivity risk score. Figure 6 shows the pipeline overview,
consisting of featurization, context filtering, feature selection, and predicting daily risk.
The inputs to the ML pipeline are acceleration data and activity labels. The acceleration data is measured

using Apple Watch. On the other hand, the activity labels are originally provided by parents to contextualize the
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Fig. 6. Overview of LemurDx’s pipeline. We use parent-provided activity labels for contextually filtering data in Section 7
and remove this dependency on human input in Section 8 by estimating activity labels from sensed data.

motion data. We first use the parent-provided labels to assess the effectiveness of using contextual data (Section 7).
Then, to ease the parents’ burden and achieve a fully automated pipeline, we try to estimate the labels without
relying on the data the parents provided (Section 8). In either case, we can use the contextual information for
each half-hour slot.

7 ESTIMATING HYPERACTIVITY RISK SCORE USING MOTION DATA AND PARENT-PROVIDED
ACTIVITY LABELS

We first describe the approach to using parent-provided activity labels. We describe each component and results
in order as well as discuss the trained model i.e., selected features and output risk score.

7.1 Featurization
The acceleration data consists of three axes (𝑥 , 𝑦, 𝑧) that were sampled at 50 Hz. We first extracted several features
with different window sizes to capture various signal characteristics. Regarding the window size, previous
research used various lengths, such as 5s [38] and 2mins [40]. We prepared a set of diverse time windows to
calculate features: 5s, 60s, and 600s. These window sizes were not empirically determined or optimized in a
hyper-parameter search. We made a design decision to choose three very different window sizes (5s, 1min,
and 10min) to capture different behavior patterns. For each window size, we first computed the following 12
features: max, min, the difference between max and min, standard deviation, mean, median, skewness, kurtosis,
zero-crossing count, energy, and peak count. Additionally, we applied Fast Fourier Transform (FFT) to each
windowed data and computed the same 12 features on the FFT values. We calculated a mean value for these 25
features for each half hour, i.e., 48-time slots per day. This was based on the implication that different children
have different average activity levels. In total, we obtained (12 + 12) × 3× 3 = 256 features for each of the 48-time
slots.

7.2 Context Filtering
Our dataset contains activity labels provided by the parents. Based on this contextual information, we can filter
feature data for the model inputs by focusing on time corresponding to specific activities. More specifically, based
on the observation made in Section 5.6, we focused on using data during the sitting/quiet activity to train our
detection model.
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Table 1. Hyper-parameters identified after 5-fold cross-validated grid search for different classification models. ML Models:
Linear Model with Stochastic Gradient Descent (SGD), Decision Tree (DT), Random Forest (RF), and Gradient Boosting (GB)

Model Hyper-parameter Without Context Filtering With Context Filtering

SGD Max number of Iterations 4 4
DT Max Depth 5 6
RF (Max Depth, Number of Estimators) (4, 600) (5, 400)
GB (Max Depth, Number of Estimators) (4, 500) (4, 300)

Then, we calculated the mean value of each feature per day. For example, if there were six half-hour slots
(i.e., three hours) for the sitting/quiet activity, we calculated the mean value of each feature using the six data
points. This way, we obtain features on a daily basis, which we use as one data instance for the ML model
described below.

7.3 Modeling
For the classification, we compared multiple ML models that are implemented in scikit-learn [41]: Linear Classifier
with SGD training, Decision Tree, Random Forest, and Gradient Boost. We chose these models since they can
output not only the final binary output but also a continuous confidence value (0 to 1), which we treat as
hyperactivity risk score henceforth. Random Forest and Gradient Boost are ensemble ML models that construct a
multitude of trees at training time. They are known to be robust against small changes in the input data and have
been used as one of the de facto standards in ML tasks with limited samples [32].
These models have hyper-parameters that can be tuned. Using 5-fold cross validation2, we opted for the

hyper-parameters in the models through grid search using F1-score as the target of the optimization. Specifically,
we tuned max iteration for the Linear Classifier with SGD, max depth for the Decision Tree, and max depth and a
number of estimators for the Random Forest and Gradient Boost. Once tuned, these hyper-parameters were fixed
in the subsequent model evaluation. The selected hyper-parameters were summarized in Table 1.

7.4 Feature Selection
We have 256 features for each day of the collection period, while we have 61 participants in total. This means
that the sample size is small in comparison to the number of features. Hence, we conducted feature selection
to reduce the dimension of the input features so that the ML models could be trained properly and capture the
trend in the feature space efficiently. Specifically, we used a similar approach based on the feature importance of
the ML model as Wang et al. [50]. That is, we selected features with feature importance greater than the average
importance value of all features. We repeated the process until the number of the selected features got fewer
than a predefined number. We searched the number in a range from 2 to 10 and chose the set of features with the
best training accuracy in the leave-one-participant-out cross validation.

7.5 Results
To validate the hyperactivity risk score from the ML models, we assess the risk score’s ability to identify children
with an ADHD diagnosis. While we do not advocate using LemurDx’s output as a black box, assessing accuracy,
precision, recall, and F1 score allows us to quantify performance and compare approaches.

2We used GridSearchCV in sklearn: https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
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(a) Pipeline without context filtering.

(b) Pipeline with context filtering.

Fig. 7. Result of different ML models with and without context filtering. ML Models: Linear Model with Stochastic Gradient
Descent (SGD), Decision Tree (DT), Random Forest (RF), and Gradient Boosting (GB)

7.5.1 Comparison of Different Classification Algorithms. We compared the classification performance with
different classifiers in two conditions: (1) with context filtering (enabled by parent-provided labels) and (2) without
context filtering. The first model uses sitting/quiet activity for training and prediction, while the second model
uses all activities without selecting moments. These models were evaluated in the leave-one-participant-out
cross validation. Across all classification models, the Random Forest model achieved the best performance with
81.6% F1-Score (with context filtering), and 63.0% F1-score (without context filtering). (See Figure 7 for other
performance measures).
There is a significant improvement in estimating hyperactivity when using contextual information, which is

also apparent in the performance of other classification models. In fact, the precision of the Random Forest model
without context filtering is particularly low: there are 12 participants in the control group who are estimated to
be hyperactive (i.e., false-positives). Ten of these participants were correctly estimated to be the control in the
model with context filtering. This result indicates that these children, even though in the control group, were
probably active when expected to be active. However, they were not very active during the sitting/quiet moments.
The use of context filtering is, thus, effective for detecting hyperactive children by preventing the model from
being confused by the individual difference in children’s activeness.
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(a) (b)

Fig. 8. Different objective measures for different activity contexts between the two conditions. (a) Risk score output by the
model and (b) Energy of the acceleration. There was a significant difference between the conditions in the risk score for the
sitting/quiet context and total (𝑝 < 0.01). The error bars are standard error.

7.5.2 Comparison with Prior Approaches to Identify Children with ADHD Diagnosis. As a comparison of the
pipeline, we trained and evaluated two existing approaches using our dataset: a Convolutional Neural Network
(CNN) architecture by Muñoz-Organero et al. [38] and a method using zero-crossing-rate (ZCR) by Lin et al. [33].
For the CNN model, we applied FFT to the acceleration data to get spectrograms and use them as input to the
CNN. On the other hand, we computed ZCR as a feature to use for the detection of the second approach. In the
same evaluation protocol, the accuracies were 70.5% and 65.6%, respectively, resulting in a similar performance
to our pipeline without using context filtering. This dip could be attributed to the different settings of the
data collection between different datasets. For example, the number of participants was relatively small – 16
participants with 5 hyperactive children in [38] and 30 participants with 15 hyperactive in [33]). In comparison,
our dataset consists of a larger population (61 participants, 25 hyperactive) across different periods (especially,
involving both before/after Covid-19 pandemic), covering a diverse presentation of hyperactivity over several
days. In addition, the result of [33] was based on the data collected during desk and seated class activities. This
comparison further highlights the importance of context filtering, which helped the ML pipeline become robust
to the data diversity.

7.6 Interpreting Risk Score
As outlined above, our ML models take the features as input and output risk score between 0 and 1 for each day
and each patient. Given the requirements unearthed in need-finding interviews with clinicians, we speculated
that extending the pipeline to output the score for a more fine-grained time scale would be helpful for clinical
decision making. Based on the highest accuracy, we used the Random Forest Classifier as our model in the
following analysis.

Figure 8 (a) shows the comparison of the half-hourly risk score in different activity contexts. According to the
t-test, there is a significant difference between the two conditions in the sitting/quiet context and total (𝑝 < 0.001).
In addition, given the risk score in exercise is highest in both conditions and the score in sitting/quiet is lowest in
the control condition, the score can be interpreted as the level of activity, i.e., high risk score means a high amount
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(a)
(b)

Fig. 9. (a) Average per-day risk score (after context filtering) distribution for each participant in the hyperactive and control
condition. The error bars are standard error over the trial days; some participants had one-day data, for whom the error bar
is not presented. The green vertical dotted line (risk score is 0.5) indicates the threshold for the final prediction i.e., having
hyperactivity or not. (b) ROC curves of the LemurDx pipeline with and without context filtering.

of activity. This is, however, different from simply the total amount of energy of the motion. If we used the energy
of the motion as a risk score to classify children into hyperactive or control, the model accuracy was 67.2% even
with context filtering. It is also evident from Figure 8 (b) that when observing the total energy of motion over
a window, the contextual difference between the control and hyperactive group is not immediately clear. One
reason behind this phenomenon is that amount of motion is only one aspect of hyperactivity. Hyperactivity is a
combination of the amount of motion and jitteriness. While a formal definition of jitteriness does not exist, it
can be thought of as self-acceleration or a non-linear combination of oscillations and jerks. Therefore, the risk
score output by an ML model captures a better characteristic of hyperactivity compared to simple hand-crafted
features such as signal power.
Figure 9 (a) shows the distribution of the risk score by days of all children with and without hyperactivity.

Some participants had one-day data, for whom the error bar is not presented3. The result shows a high variability
of the risk score, while there is a clear difference between the two conditions for most participants. This result
suggests the need for measuring children over time to capture a wide spectrum of their daily lives. As a reference,
if we use only data from the first day, the accuracy falls down to 78.7% even with context filtering. This result
verifies our approach of using the app for multiple days with no constraints for users. In the future deployment
of our system, we plan to collect data for longer periods and evaluate patterns of daily risk scores.

3Participants in Phase 1 took medicine for one of the two days, which was removed from the analysis.
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Fig. 10. Relationship between participant’s VADPRS and averaged risk score. The black line indicates the regression line.

Figure 9 (b) shows the ROC curves of the performance of LemurDx pipeline with and without context filtering,
clearly showing the effectiveness of context filtering. The cut-off point is 0.505 at which the false positive rate
and true positive rate are 0.11 and 0.80, respectively.
Figure 10 presents the relationship between participants’ VADPRS and final risk score. There is a slight

correlation between the output risk score and the VADPRS score. This result implied the possibility of our pipeline
to estimate the severity of the hyperactivity, which will be helpful in clinical practice. For example, the model
can be used reliably as a screening tool to detect severe hyperactivity by using a higher threshold against the
risk score. Additionally, we can monitor the shift of the severity over days and, for instance, we can quantify the
effectiveness of medication. However, the correlation is still not very high and it is not clear if it is because of
model noise or the noise in children’s behavior over multiple days and contexts.

8 ESTIMATING HYPERACTIVITY RISK SCORE USING MOTION DATA WITHOUT
PARENT-PROVIDED ACTIVITY LABELS

Our first analysis demonstrated the effectiveness of context filtering, and the proposed ML pipeline successfully
detected children with hyperactivity from motion data collected from smartwatches with reasonable accuracy.
For fully automated detection, we now aim to remove the labor of providing activity context manually.

8.1 Models
Based on the findings from the previous section, we aimed to develop a filter that finds moments where the
difference between children with and without hyperactivity would be significant. Once the filter is developed, it
replaces the parent-provided activity labels in the already-developed ML model. We compared several approaches
to developing the filter, including using data from other sensors (e.g., location, heart rate), and existing motion-
based human activity recognition models. Here, we describe the findings from the approaches that worked
best.
For each test participant in the leave-one-participant-out cross validation in hyperactivity detection, we

estimate activity labels with an ML model that is trained using the parent-provided activity labels of the training
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(a)

(b)

Fig. 11. The results of the ML-based model for the sitting/quiet detection. (a) Distribution of the likelihood output by the
model by parent-provided labels. (b) The precision of the model by parent-provided labels.

participants. In this way, we remain agnostic about the activity labels of the test participant while following
the same evaluation protocol of Section 7. We trained ML models to estimate whether each child was in the
sitting/quiet condition for half an hour when the data was collected. Specifically, we trained Random Forest [21]
model that takes motion features as well as time index and day type as inputs. As noted in Section 7.3, Random
Forest is known to be a robust classifier and is often used in a similar setting, that is, human activity recognition
from wearables [4]. The time index is 48 categorical values: 0 corresponds to 0:00–0:30, and 47 corresponds to
23:30–24:00. The day type is three categorical values: 0 for no school, 1 for in-person school, and 2 for virtual
school. The idea behind using the school day type as a feature involves the observation that school day types
affect the distribution of activities (Section 5.6). For motion features, we first calculated the correlation between
each feature (same as used in Section 7.1) and whether it is sitting/quiet. We then used the top five features that
have a high correlation.
Note that several existing approaches use neural networks for human activity recognition, such as using

Convolutional Neural Network (CNN) [29] and Long Short-TermMemoryNetwork (LSTM) [26]. These approaches,
however, are trained on short segments of raw motion data (e.g., 5s) with precise activity labels. However, the
labels in our dataset are coarse and imprecise (recall the parents provided half-hourly labels at the end of the day).
We anticipated that, since deep-learning-based approach generally needs a large amount of data, our coarse and
noisy dataset would not be suitable. Here, as a comparison point, we prepared the same architecture of the CNN
model in [29] and trained it on our dataset. The input window size was set to 10s following their implementation.
This model has a different dimension of the outputs (i.e., different classes), so we modified the final layer of the
neural networks such that it outputs a two-dimensional vector (i.e., sitting/quiet or not). We then obtained the
final half-hourly labels by aggregating the predictions of each window.

8.2 Results
We first report the matching ratio between the predicted and parent-provided labels, that is, the accuracy of the
context estimation. Then we discuss the result of the hyperactivity detection that uses context filtering based on
the predicted labels.

8.2.1 Sitting/Quiet Detection. The accuracy for the Random Forest model was 74.5% (precision: 60.8%, recall:
60.9%), while the accuracy for the CNN was 63.3% (precision: 41.1%, recall: 45.6%). Here, we analyze the estimation
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Table 2. Result of hyperactivity detection models with estimated activity labels.

Context Model Hyperactivity Model Accuracy Precision Recall F1-Score

RF RF 82.0% 76.9% 80.0% 78.4%
CNN RF 75.4% 69.2% 72.0% 70.6%

result of the Random Forest model. Figure 11 (a) suggests that the distributions of the sitting/quiet likelihood
are reasonably different across parent-provided activity labels. The model puts a lower likelihood for the at
school and exercise moments. This can be understood as the exercise moments are captured by the motion data,
and the moments for children at school can be detected by the day type and time index. However, the model
is somewhat confused by the sitting/quiet and everyday/household moments. More specifically, the likelihood
corresponding to the everyday/household moments (blue, according to the parents) is distributed almost equally,
while the likelihood corresponding to the sitting/quiet moments (green, according to the parents) is skewed to
the right side. This result implies that the parents have, understandably, used the label of the everyday/household
to represent a broad range of their child’s behavior. Thus, it is suggested that future work could refine the label
resolution or incorporate a better way of annotating children’s behaviors, which we will discuss in Section 9.2.1.
Figure 11 (b) shows the matching between the predicted sitting/quiet moments and the parent-provided labels.

8.2.2 Hyperactivity Detection. Finally, we use the estimated activity for context filtering in our ML pipeline, as
shown in Figure 6. Apart from the new approach to filtering the sensed data, the rest of the ML model remained
the same as in the previous section. Here, we used the Random Forest Classifier as the hyperactivity classifier
based on the result of the previous section and compared the different models for context estimation. The results
are summarized in Table 2. The automated ML pipeline based on the RF-based sitting/quiet detection achieved
82.0% accuracy vs. 85.2% accuracy while using parent-provided activity labels. This result suggests that, even
without using parent-provided labels for test participants, the trained filter based on the ML-based model can
help reliably estimate the risk score for the children.
Interestingly, there is a gap between the accuracy of the sitting/quiet detection and the accuracy of the final

hyperactivity detection. This can be attributed to the fact that the parent-provided labels are noisy and coarse
since they were provided by parents at the end of each day. While we cannot access the “ground truth” of the
activity, the result implies that the ML-based model using motion data can capture the sitting/quiet context
reasonably well to use for context filtering within the pipeline.

9 DISCUSSION
In this paper, we presented an approach to estimating children’s hyperactivity risk with data passively sensed at
smartwatches in an unconstrained manner. While our ML pipeline successfully detected hyperactivity in children
with reasonable accuracy (85.2% with parent-provided labels, 82.0% with estimated labels), several limitations
remain. In this section, we discuss them as well as expected future work.

9.1 Limitations
While our system showcases initial real-world feasibility, there are several limitations that need to be overcome
before it can be deployed at scale. First is the absence of children with a middle level of hyperactivity. Our study
only recruited participants with a VADPRS score of above 8 and below 5. Recruiting a broader range will help in
a more representative real-world dataset. Furthermore, while we make a binary distinction between hyperactive
and control, there are many subtypes of hyperactivity that would need a more fine-grained analysis. This is
further compounded when multiple neurological disorders manifest together. Thus, we need a more holistic data
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collection and modeling pipeline to tackle these scenarios. In the future, we plan to cover a more diverse range
of behavioral, demographic, and clinical factors such as gender, age, ethnicity, medication use, and psychiatric
co-morbidity. This would lead to the development of more generalizable learning models, stronger indicators
of hyperactivity, contextualization of the user’s activity better, and further help improve visualization tools for
clinicians.

9.2 Future Work
9.2.1 Refining Estimated Context Filter. While our pipeline using context filtering based on estimated labels
showed a better performance than the pipeline without using context filtering (Section 8.2), it falls short of the
pipeline using parent-provided labels. In other words, the quality of the context filter is important for LemurDx
to work. Here, there are several ways to improve the context filtering. The first is to combine other sensing data
at smartwatches, such as GPS, heart rate, and Bluetooth information. For example, heart rate might be helpful to
better estimate when a child is exercising. GPS can also be informative for the model to incorporate location
information (e.g., at school or at home). Unfortunately, in our data collection, some of the data were not logged
correctly due to a bug in the data collection app. Therefore, we continue to collect new data with an updated
version of the app.

Secondly, using the trained models for both activity recognition and hyperactivity detection, we are developing
an on-device app that proactively asks for parents’ input while collecting data. If our activity recognition model
estimates that the child is sitting/quiet and our hyperactivity detection model outputs high risk score, the app
can send a notification to the parents to annotate their behavior (e.g., usual or unusual). In this way, LemurDx
can obtain contextual information interactively from the parents, which will help the prediction. Moreover, we
expect parents to experience less cognitive load than the current annotation method, i.e., logging diary at the end
of each day (Section 5.2).

9.2.2 Refining Learning Framework. While our pipeline showcases initial feasibility, there are several explorations
to further improve our learning and modeling framework. Our current pipeline averages the scores across all
the days and weights them equally. In future versions, we can work on dynamic weighting algorithms based
on motion-based conditional priors. Consequently, the model can learn temporal artifacts and can make a
continuous prediction, rather than a snapshot analysis of each day as a segment. This would require better
temporal modeling frameworks such as HMMs, RNNs, and policy-based learning methods. Further, we can
leverage the vast availability of general-purpose accelerometer datasets to build a baseline for a “regular” motion
data profile. We can then model hyperactivity as a deviation from this baseline, e.g. treating the problem akin to
an anomaly detection framework.
We can also incorporate insights from other IMU sources such as gyroscopes and magnetometers that infer

not just acceleration but also the orientation of the joints. Further, works such as [37, 45, 48, 55] have also looked
at inferring arm pose and the immediate environment from wrist-worn IMU sensors. We can incorporate the
inference of such techniques better to contextualize the pose and activity of the wearer.

9.2.3 Expanding Applications of the Objective Measure. We designed our pipeline to output the risk score half-
hourly to improve the interpretability of the ML model, based on the findings in the interviews with clinicians
Section 4.2. As we showed in Section 7.6, the score captures the characteristic of hyperactivity in the single
dimension. In this sense, the score can be regarded as an objective measure of hyperactivity that we can compare
across different days, times, contexts, and participants. This score allows us to develop further applications
beyond detecting hyperactive children.
We now can calculate a reliable real-time hyperactivity risk score. This will lend itself naturally to assisting

clinicians with the accurate titration of medications. The process of medication titration is complex and lengthy,
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typically taking several weeks to months. For example, it takes more than four months for one in four pediatric
patients. Providers start children at a low dose, typically not therapeutic, and gradually increase the dose until a
therapeutic dose is reached. This requires several rounds of parent and teacher questionnaires and multiple office
visits. LemurDx has the potential to streamline this process by providing an objective, continuous, and low-burden
monitoring system to provide clinicians with rapid feedback. This is beneficial as all ADHDmedications, including
the stimulant classes, have side effects [6, 10].
It can also be used for developing an intervention for children. Dibia [15] developed a smartwatch app to

facilitate the self-regulation of people with ADHD. In this regard, Cibrian et al. [8] emphasized not distracting
them when they are focused, that is, reducing false-positive interventions. To the authors’ knowledge, there has
not been a system that intervenes in children based on their real-time behavior related to hyperactivity. Thus,
LemurDx can be helpful by improving the timing of the intervention based on the estimated risk score.

9.2.4 Deploying a Tool for Clinicians. Our ultimate goal is to develop a diagnostic support tool for clinicians.
To this aim, we first conducted semi-structured interviews (Section 4) and found out the requirements for the
pipeline, that is, outputting a risk score and enabling context filtering. We successfully detected hyperactivity with
a conventional smartwatch in an unconstrained setting. Our next step involves an evaluation of the effectiveness
of such a tool. We have come up with several design ideas for the interfaces based on the interview findings and
inputs from a clinician on our team. For example, Figure 1 shows one of our current prototypes. Clinicians can
inspect the risk score output by our ML pipeline by different filters, such as time and activity context, which
fulfills the requirements we obtained in Section 4.2. We plan to deploy the prototype to a local clinic, evaluate
how the tool affects the clinicians’ workflow, and investigate its effectiveness over trials.

10 CONCLUSION
We reported our series of works on detecting hyperactive children from smartwatches’ data collected in an
unconstrained setting. We conducted semi-structured interviews with clinicians to gain their perspectives on
designing systems and identified two key aspects: having an objective scale of hyperactivity and enabling
comparison of the scale by different contexts. Our study involved 61 children (25 with hyperactivity) and spanned
2–7 days, collecting motion data and parent-provided half-hourly activity labels. The first analysis confirms the
effectiveness of context filtering based on the provided activity labels, improving the detection performance
from 67.2% to 85.2%. Moreover, the second analysis demonstrated that such a context can be learned from the
data, meaning we do not have to rely on parents’ efforts to log labels. The fully-automated pipeline achieved
82.0% accuracy. Furthermore, our pipeline outputs a risk score by half an hour for each participant, allowing us
to do in-depth analysis and room for more applications. While future work remains, our study is a first step to
supporting clinicians to diagnose hyperactive children using already existing devices without significant burden
to patients or their family members.
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